Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tom70 protects against diabetic cardiomyopathy through its antioxidant and antiapoptotic properties

Abstract

Mitochondrial dysfunction plays a critical role in the pathogenesis of diabetic cardiomyopathy. Translocase of mitochondrial outer membrane 70 (Tom70) primarily facilitates the import of mitochondrial preproteins that may be involved in the regulation of oxidative stress and mitochondrial function. This study aimed to investigate the role of Tom70 in the development of myocardial injury in leptin receptor-deficient (db/db) diabetic mice. Tom70 siRNA or an overexpressing lentivirus was intramuscularly injected into mouse hearts or used to treat cultured neonatal cardiomyocytes. We found that Tom70 was downregulated in the diabetic hearts compared with the level in the wild-type hearts and that knocking down Tom70 exacerbated cardiac hypertrophy, fibrosis, and ventricular dysfunction in the db/db mice. Similarly, the in vitro data demonstrated that silencing Tom70 enhanced high-glucose and high-fat (HGHF) medium treatment-induced mitochondrial superoxide production, decreased ATP production and the mitochondrial membrane potential, and enhanced cell apoptosis in neonatal cardiomyocytes. Importantly, overexpression of Tom70 alleviated HGHF medium-induced oxidative stress, mitochondrial dysfunction, and cell apoptosis. Furthermore, in vivo data confirmed that reconstitution of Tom70 ameliorated cardiac hypertrophy, interstitial fibrosis, and ventricular dysfunction in the db/db mice. In addition, Tom70 overexpression mitigated mitochondrial fragmentation and dysfunction in the hearts of the db/db mice. Taken together, these findings suggest that downregulation of Tom70 contributes to the development of diabetic cardiomyopathy and that reconstitution of Tom70 may be a new therapeutic strategy for the prevention and treatment of diabetic cardiomyopathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115:3213–23.

    Article  PubMed  Google Scholar 

  2. Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M. Diabetic cardiomyopathy: current and future therapies. beyond glycemic control. Front Physiol. 2018;9:1514.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Teshima Y, Takahashi N, Nishio S, Saito S, Kondo H, Fukui A, et al. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circ J. 2014;78:300–6.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson EJ, Rodriguez E, Anderson CA, Thayne K, Chitwood WR, Kypson AP. Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways. Am J Physiol Heart Circ Physiol. 2011;300:H118–124.

    Article  CAS  PubMed  Google Scholar 

  5. Anderson EJ, Kypson AP, Rodriguez E, Anderson CA, Lehr EJ, Neufer PD. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol. 2009;54:1891–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Backes S, Hess S, Boos F, Woellhaf MW, Godel S, Jung M, et al. Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J Cell Biol. 2018;217:1369–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fan AC, Kozlov G, Hoegl A, Marcellus RC, Wong MJ, Gehring K, et al. Interaction between the human mitochondrial import receptors Tom20 and Tom70 in vitro suggests a chaperone displacement mechanism. J Biol Chem. 2011;286:32208–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Filadi R, Leal NS, Schreiner B, Rossi A, Dentoni G, Pinho CM, et al. TOM70 Sustains Cell Bioenergetics by Promoting IP3R3-Mediated ER to Mitochondria Ca(2+) Transfer. Curr Biol. 2018;28:369–82. e366

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Qi M, Li C, Shi D, Zhang D, Xie D, et al. Tom70 serves as a molecular switch to determine pathological cardiac hypertrophy. Cell Res. 2014;24:977–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pei HF, Hou JN, Wei FP, et al. Melatonin attenuates postmyocardial infarction injury via increasing Tom70 expression. J Pineal Res. 2017;62:1–13

    Article  Google Scholar 

  11. Santos JM, Kowluru RA. Impaired transport of mitochondrial transcription factor A (TFAM) and the metabolic memory phenomenon associated with the progression of diabetic retinopathy. Diabetes Metab Res Rev. 2013;29:204–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ehler E, Moore-Morris T, Lange S. Isolation and culture of neonatal mouse cardiomyocytes. J Vis Exp. 2013;6:50154.

    Google Scholar 

  13. Vidyasekar P, Shyamsunder P, Santhakumar R, Arun R, Verma RS. A simplified protocol for the isolation and culture of cardiomyocytes and progenitor cells from neonatal mouse ventricles. Eur J Cell Biol. 2015;94:444–52.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Zhang Y, Li W, et al. Uncoupling Protein 2 Inhibits Myointimal Hyperplasia in Preclinical Animal Models of Vascular Injury. J Am Heart Assoc. 2017;6:e002641.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Duncan JG. Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim Biophys Acta. 2011;1813:1351–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Edmonson AM, Mayfield DK, Vervoort V, DuPont BR, Argyropoulos G. Characterization of a human import component of the mitochondrial outer membrane, TOMM70A. Cell Commun Adhes. 2002;9:15–27.

    Article  CAS  PubMed  Google Scholar 

  17. Sun J, Pu Y, Wang P, Chen S, Zhao Y, Liu C, et al. TRPV1-mediated UCP2 upregulation ameliorates hyperglycemia-induced endothelial dysfunction. Cardiovasc Diabetol 2013;12:69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiong S, Wang P, Ma L, Gao P, Gong L, Li L, et al. Ameliorating endothelial mitochondrial dysfunction restores coronary function via transient receptor potential vanilloid 1-mediated protein kinase A/uncoupling protein 2 pathway. Hypertension. 2016;67:451–60.

    Article  CAS  PubMed  Google Scholar 

  19. Pierrat B, Ito M, Hinz W, Simonen M, Erdmann D, Chiesi M, et al. Uncoupling proteins 2 and 3 interact with members of the 14.3.3 family. Eur J Biochem. 2000;267:2680–7.

    Article  CAS  PubMed  Google Scholar 

  20. Young JC, Hoogenraad NJ, Hartl FU. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell. 2003;112:41–50.

    Article  CAS  PubMed  Google Scholar 

  21. Takano T, Kohara M, Kasama Y, Nishimura T, Saito M, Kai C, et al. Translocase of outer mitochondrial membrane 70 expression is induced by hepatitis C virus and is related to the apoptotic response. J Med Virol. 2011;83:801–9.

    Article  PubMed  Google Scholar 

  22. Xue Q, Pei H, Liu Q, Zhao M, Sun J, Gao E, et al. MICU1 protects against myocardial ischemia/reperfusion injury and its control by the importer receptor Tom70. Cell Death Dis. 2017;8:e2923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kato H, Lu Q, Rapaport D, Kozjak-Pavlovic V. Tom70 is essential for PINK1 import into mitochondria. PLoS One 2013;8:e58435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006;441:1157–61.

    Article  CAS  PubMed  Google Scholar 

  25. Ji L, Liu F, Jing Z, Huang Q, Zhao Y, Cao H, et al. MICU1 alleviates diabetic cardiomyopathy through mitochondrial Ca(2+)-dependent antioxidant response. Diabetes 2017;66:1586–1600.

    Article  CAS  PubMed  Google Scholar 

  26. Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 2018;122:624–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 2014;57:660–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu F, Song R, Feng Y, Guo J, Chen Y, Zhang Y, et al. Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor alpha. Circulation. 2015;131:795–804.

    Article  CAS  PubMed  Google Scholar 

  29. Battiprolu PK, Hojayev B, Jiang N, Wang ZV, Luo X, Iglewski M, et al. Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. J Clin Invest. 2012;122:1109–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shepherd DL, Hathaway QA, Nichols CE, Durr AJ, Pinti MV, Hughes KM, et al. Mitochondrial proteome disruption in the diabetic heart through targeted epigenetic regulation at the mitochondrial heat shock protein 70 (mtHsp70) nuclear locus. J Mol Cell Cardiol. 2018;119:104–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (81970262) and the Innovation Team Project from the Department of Education of Sichuan Province (18TD0030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjian Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Wang, D., Yang, Y. et al. Tom70 protects against diabetic cardiomyopathy through its antioxidant and antiapoptotic properties. Hypertens Res 43, 1047–1056 (2020). https://doi.org/10.1038/s41440-020-0518-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-020-0518-x

Keywords

This article is cited by

Search

Quick links