Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retinal vascular arcade angle as a biomarker for visual improvement after epiretinal membrane surgery

Abstract

Objectives

To investigate the changes in the temporal vascular angles after epiretinal membrane (ERM) surgery and utilize the angles to predict visual outcomes.

Methods

A total of 168 eyes from 84 patients with unilateral ERM who underwent vitrectomy were enrolled from a single institution. The angles of temporal venous (anglevein) and arterial arcades (angleartery) were measured on fundus photographs. The relationships between the angles and the best-corrected visual acuity (BCVA) were explored and multivariable logistic models and receiver operating characteristic (ROC) curves were analyzed to identify the factors that predicted visual outcomes.

Results

At baseline, both angleartery and anglevein were narrower in the eyes with ERM than the fellow eyes (p < 0.001 and 0.007) but had no correlation with the baseline BCVA (p = 0.754 and 0.804). Postoperatively, the angleartery and anglevein significantly widened (both p < 0.001) and a greater BCVA improvement was associated with a greater widening of the angleartery (p = 0.029) and anglevein (p = 0.050). Multivariable logistic analyses found a narrower baseline angleartery compared to the fellow eye had a higher chance for BCVA improvement  2 lines (Odds ratio = 0.97; 95% CI, 0.94–0.99; p = 0.016). ROC curve showed the baseline difference in the angleartery between bilateral eyes predicted BCVA improvement  2 lines (area under the curve = 0.74; p = 0.035), and a 0.73 sensitivity and 0.80 specificity with a cut-off value of −27.19 degrees.

Conclusions

The retinal vascular angles widened after ERM surgery and the fundus photograph-derived angles may serve as a highly-accessible biomarker to predict postoperative visual outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Definition and measurement of temporal retinal vascular angle.

Similar content being viewed by others

Data availability

Data supporting the findings of the current study are available from the corresponding author on reasonable request.

References

  1. Smiddy WE, Maguire AM, Green WR, Michels RG, de la Cruz Z, Enger C, et al. Idiopathic epiretinal membranes. Ultrastructural characteristics and clinicopathologic correlation. Ophthalmology. 1989;96:811–20.

    Article  CAS  PubMed  Google Scholar 

  2. Kim JH, Kim YM, Chung EJ, Lee SY, Koh HJ. Structural and functional predictors of visual outcome of epiretinal membrane surgery. Am J Ophthalmol. 2012;153:103–10.

    Article  PubMed  Google Scholar 

  3. Fung AT, Galvin J, Tran T. Epiretinal membrane: A review. Clin Exp Ophthalmol. 2021;49:289–308.

    Article  PubMed  Google Scholar 

  4. Chen X, Klein KA, Shah CP, Heier JS. Progression to Surgery for Patients With Idiopathic Epiretinal Membranes and Good Vision. Ophthalmic Surg Lasers Imaging Retin. 2018;49:S18–22.

    Article  Google Scholar 

  5. Dawson SR, Shunmugam M, Williamson TH. Visual acuity outcomes following surgery for idiopathic epiretinal membrane: an analysis of data from 2001 to 2011. Eye (London). 2014;28:219–24.

    Article  CAS  Google Scholar 

  6. Matoba R, Morizane Y. Surgical Treatment of Epiretinal Membrane. Acta Med Okayama. 2021;75:403–13.

    PubMed  Google Scholar 

  7. Miliatos I, Lindgren G. Epiretinal membrane surgery evaluated by subjective outcome. Acta Ophthalmol. 2017;95:52–9.

    Article  PubMed  Google Scholar 

  8. Scheerlinck LM, van der Valk R, van Leeuwen R. Predictive factors for postoperative visual acuity in idiopathic epiretinal membrane: a systematic review. Acta Ophthalmol. 2015;93:203–12.

    Article  PubMed  Google Scholar 

  9. Coppola M, Brambati M, Cicinelli MV, Marchese A, Zanzottera EC, Peroglio Deiro A, et al. The visual outcomes of idiopathic epiretinal membrane removal in eyes with ectopic inner foveal layers and preserved macular segmentation. Graefes Arch Clin Exp Ophthalmol. 2021;259:2193–201.

    Article  CAS  PubMed  Google Scholar 

  10. Feng J, Yang X, Xu M, Wang Y, Shi X, Zhang Y, et al. Association of Microvasculature and Macular Sensitivity in Idiopathic Macular Epiretinal Membrane: Using OCT Angiography and Microperimetry. Front Med (Lausanne). 2021;8:655013.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Weinberger D, Stiebel-Kalish H, Priel E, Barash D, Axer-Siegel R, Yassur Y. Digital red-free photography for the evaluation of retinal blood vessel displacement in epiretinal membrane. Ophthalmology. 1999;106:1380–3.

    Article  CAS  PubMed  Google Scholar 

  12. Yang HK, Kim SJ, Jung YS, Kim KG, Kim JH, Yu HG. Improvement of horizontal macular contraction after surgical removal of epiretinal membranes. Eye (London). 2011;25:754–61.

    Article  CAS  Google Scholar 

  13. Nagura K, Inoue T, Zhou HP, Obata R, Asaoka R, Arasaki R, et al. Association between retinal artery angle and visual function in eyes with idiopathic epiretinal membrane. Transl Vis Sci Technol. 2021;10:35.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Govetto A, Lalane RA 3rd, Sarraf D, Figueroa MS, Hubschman JP. Insights into epiretinal membranes: presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme. Am J Ophthalmol. 2017;175:99–113.

    Article  PubMed  Google Scholar 

  15. Govetto A, Virgili G, Rodriguez FJ, Figueroa MS, Sarraf D, Hubschman JP. Functional and anatomical significance of the ectopic inner foveal layers in eyes with idiopathic epiretinal membranes: surgical results at 12 months. Retina. 2019;39:347–57.

    Article  PubMed  Google Scholar 

  16. González-Saldivar G, Berger A, Wong D, Juncal V, Chow DR. Ectopic Inner Foveal Layer Classification Scheme Predicts Visual Outcomes After Epiretinal Membrane Surgery. Retina. 2020;40:710–7.

    Article  PubMed  Google Scholar 

  17. Mavi Yildiz A, Avci R, Yilmaz S. The predictive value of ectopic inner retinal layer staging scheme for idiopathic epiretinal membrane: surgical results at 12 months. Eye (Lond). 2021;35:2164–72.

    Article  CAS  PubMed  Google Scholar 

  18. Kim BH, Kim DI, Bae KW, Park UC. Influence of postoperative ectopic inner foveal layer on visual function after removal of idiopathic epiretinal membrane. PLoS One. 2021;16:e0259388.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mahmoudzadeh R, Israilevich R, Salabati M, Hsu J, Garg SJ, Regillo CD, et al. Pars plana vitrectomy for idiopathic epiretinal membrane: oct biomarkers of visual outcomes in 322 Eyes. Ophthalmol Retin. 2022;6:308–17.

    Article  Google Scholar 

  20. Kunavisarut P, Supawongwattana M, Patikulsila D, Choovuthayakorn J, Watanachai N, Chaikitmongkol V, et al. Idiopathic epiretinal membranes: visual outcomes and prognostic factors. Turk J Ophthalmol. 2022;52:109–18.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Lee MW, Jung I, Song YY, Baek SK, Lee YH. Long-term outcome of epiretinal membrane surgery in patients with internal limiting membrane dehiscence. J Clin Med. 2020;9:2470.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Jeon S, Jung B, Lee WK. Long-term prognostic factors for visual improvement after epiretinal membrane removal. Retina. 2019;39:1786–93.

    Article  PubMed  Google Scholar 

  23. Zhmurin R, Grajewski L, Krause L. Influence of preoperative foveal layers’ Thickness on Visual Function and Macular Morphology by Phacovitrectomy for Epiretinal Membrane. J Ophthalmol. 2022;2022:1895498.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Doguizi S, Sekeroglu MA, Ozkoyuncu D, Omay AE, Yilmazbas P. Clinical significance of ectopic inner foveal layers in patients with idiopathic epiretinal membranes. Eye (Lond). 2018;32:1652–60.

    Article  PubMed  Google Scholar 

  25. Kaplan RI, Chen M, Gupta M, Rosen RB. Impact of automated OCT in a high-volume eye urgent care setting. BMJ Open Ophthalmol. 2019;4:e000187.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Gupta P, Sadun AA, Sebag J. Multifocal retinal contraction in macular pucker analyzed by combined optical coherence tomography/scanning laser ophthalmoscopy. Retina. 2008;28:447–52.

    Article  PubMed  Google Scholar 

  27. Mase T, Ishibazawa A, Nagaoka T, Yokota H, Yoshida A. Radial peripapillary capillary network visualized using wide-field montage optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57:504–10.

    Article  Google Scholar 

  28. Iwase T, Ra E, Yamamoto K, Kaneko H, Ito Y, Terasaki H. Differences of retinal blood flow between arteries and veins determined by laser speckle flowgraphy in healthy subjects. Med (Baltim). 2015;94:e1256.

    Article  Google Scholar 

  29. Matsopoulos GK, Asvestas PA, Delibasis KK, Mouravliansky NA, Zeyen TG. Detection of glaucomatous change based on vessel shape analysis. Comput Med Imaging Graph. 2008;32:183–92.

    Article  PubMed  Google Scholar 

  30. Liu R, Li Q, Xu F, Wang S, He J, Cao Y, et al. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital. Biomed Eng Online. 2022;21:47.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Rodenbeck SJ, Mackay DD. Examining the ocular fundus in neurology. Curr Opin Neurol. 2019;32:105–10.

    Article  PubMed  Google Scholar 

  32. Beduk T, Beduk D, Hasan MR, Guler Celik E, Kosel J, Narang J, et al. Smartphone-Based Multiplexed Biosensing Tools for Health Monitoring. Biosens (Basel). 2022;12:583.

    Article  Google Scholar 

  33. Fraser-Bell S, Symes R, Vaze A. Hypertensive eye disease: a review. Clin Exp Ophthalmol. 2017;45:45–53.

    Article  PubMed  Google Scholar 

  34. Wagner-Schuman M, Dubis AM, Nordgren RN, Lei Y, Odell D, Chiao H, et al. Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci. 2011;52:625–34.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Kashani AH, Zimmer-Galler IE, Shah SM, Dustin L, Do DV, Eliott D, et al. Retinal thickness analysis by race, gender, and age using Stratus OCT. Am J Ophthalmol. 2010;149:496–502.

    Article  PubMed  Google Scholar 

  36. Asano S, Yamashita T, Asaoka R, Fujino Y, Murata H, Terasaki H, et al. Retinal vessel shift and its association with axial length elongation in a prospective observation in Japanese junior high school students. PLoS One. 2021;16:e0250233.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HDC, YCC: writing the manuscript, analysing the results, and interpreting the data. EYCK, YHC, LL, KJC, YSH, ANC, WCW, CCL: data collection. HDC, YCC, PYW: data processing. HDC, YCC: conception and design of the work. All authors approved the final manuscript.

Corresponding author

Correspondence to Chi-Chun Lai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, HD., Chang, YC., Wu, PY. et al. Retinal vascular arcade angle as a biomarker for visual improvement after epiretinal membrane surgery. Eye 38, 778–785 (2024). https://doi.org/10.1038/s41433-023-02776-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02776-6

Search

Quick links