Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evaluation of the rheological and rupture properties of gelatin-based hydrogels blended with polymers to determine their drug diffusion behavior

Abstract

In this study, the drug diffusion behavior and kinetics of gelatin hydrogels that were prepared with polymers were evaluated in terms of their rheological and rupture properties. The rheological and rupture properties of polymer-blended hydrogels prepared at pH 5.5 indicated that gelatin was homogeneously mixed with hydroxypropyl methylcellulose phthalate (HPMCP) or methacrylic acid-ethyl acrylate copolymer (Eudragit®) but not with hydroxypropyl methylcellulose or hydroxypropyl methylcellulose acetate succinate. We found that the release rate of nizatidine, a water-soluble drug, from the gelatin/HPMCP hydrogels might be inhibited compared with that from the gelatin/Eudragit® hydrogels at pH 1.2. This was because compared to the gelatin/Eudragit® hydrogels, the gelatin/HPMCP hydrogels had a higher crossover point between the strain-dependent storage and loss moduli. In addition, the gelatin/HPMCP and gelatin/Eudragit® hydrogels showed an increase in rupture stress and strain when the polymer content was increased. The drug diffusion mechanism of the gelatin/HPMCP hydrogel formulations from pH 1.0 to 6.0 was identified using four kinetic models. The findings indicated that the drug diffusion behavior of the gelatin/HPMCP gels below pH 2.0 was governed by diffusion of the drug. These results demonstrate that gelatin-based hydrogels with HPMCP are potential candidates for inhibiting the release of nizatidine in a gastric pH medium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liao J, Hou B, Huang H. Preparation, properties and drug controlled release of chitin-based hydrogels: an updated review. Carbohydr Polym 2022;283:119177.

    Article  CAS  PubMed  Google Scholar 

  2. Kadota K, Nogami S, Uchiyama H, Tozuka Y. Controlled release behavior of curcumin from kappa-carrageenan gels with flexible texture by the addition of metal chlorides. Food Hydrocoll. 2020;101:105564.

    Article  CAS  Google Scholar 

  3. Nogami S, Kadota K, Uchiyama H, Arima-Osonoi H, Iwase H, Tominaga T, et al. Structural changes in pH-responsive gelatin/hydroxypropyl methylcellulose phthalate blends aimed at drug-release systems. Int J Biol Macromol. 2021;190:989–98.

  4. Cui T, Wu Y, Ni C, Sun Y, Cheng J. Rheology and texture analysis of gelatin/dialdehyde starch hydrogel carriers for curcumin controlled release. Carbohydr Polym. 2022;283:119154.

    Article  CAS  PubMed  Google Scholar 

  5. Kim AR, Lee SL, Park SN. Properties and in vitro drug release of pH- and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin. Int J Biol Macromol. 2018;118:731–40.

    Article  CAS  PubMed  Google Scholar 

  6. Xing Q, Yates K, Vogt C, Qian Z, Frost MC, Zhao F. Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep. 2014;4:1–10.

    Google Scholar 

  7. Asoh TA. Electrophoretic hydrogel adhesion for fabrication of three-dimensional materials. Polym J. 2016;48:1095–101.

    Article  CAS  Google Scholar 

  8. Takada K, Komuro A, Ali MA, Singh M, Okajima M, Matsumura K, et al. Cell-adhesive gels made of sacran/collagen complexes. Polym J. 2022;54:581–9.

    Article  CAS  Google Scholar 

  9. Sagawa T, Oishi M, Yataka Y, Sato R, Iijima K, Hashizume M. Control of the molecular permeability of polysaccharide composite films utilizing a molecular imprinting approach. Polym J. 2022;54:571–9.

    Article  CAS  Google Scholar 

  10. Ata S, Rasool A, Islam A, Bibi I, Rizwan M, Azeem MK, et al. Loading of Cefixime to pH sensitive chitosan based hydrogel and investigation of controlled release kinetics. Int J Biol Macromol. 2020;155:1236–44.

  11. Ghosh SK, Das A, Basu A, Halder A, Das S, Basu S, et al. Semi-interpenetrating hydrogels from carboxymethyl guar gum and gelatin for ciprofloxacin sustained release. Int J Biol Macromol. 2018;120:1823–33.

    Article  CAS  PubMed  Google Scholar 

  12. Shimoyama T, Itoh K, Kobayashi M, Miyazaki S, D’Emanuele A, Attwood D. Oral liquid in situ gelling methylcellulose/alginate formulations for sustained drug delivery to dysphagic patients. Drug Dev Ind Pharm. 2012;38:952–60.

    Article  CAS  PubMed  Google Scholar 

  13. Goudoulas TB, Germann N. Phase transition kinetics and rheology of gelatin-alginate mixtures. Food Hydrocoll. 2017;66:49–60.

    Article  CAS  Google Scholar 

  14. Nigmatullin R, Johns MA, Eichhorn SJ. Hydrophobized cellulose nanocrystals enhance xanthan and locust bean gum network properties in gels and emulsions. Carbohydr Polym. 2020;250:116953.

  15. Tang XM, Lei CY, Wang Y, Li D, Wang LJ. Rheological and structural properties of sodium caseinate as influenced by locust bean gum and κ-carrageenan. Food Hydrocoll. 2021;112:106251.

  16. Kadokawa J. Glucan phosphorylase-catalyzed enzymatic synthesis of unnatural oligosaccharides and polysaccharides using nonnative substrates. Polym J. 2022;54:413–26.

    Article  CAS  Google Scholar 

  17. Mirzaie Z, Reisi-Vanani A, Barati M. Polyvinyl alcohol-sodium alginate blend, composited with 3D-graphene oxide as a controlled release system for curcumin. J Drug Deliv Sci Technol. 2019;50:380–7.

    Article  CAS  Google Scholar 

  18. Jahanban-Esfahlan R, Derakhshankhah H, Haghshenas B, Massoumi B, Abbasian M, Jaymand M. A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy. Int J Biol Macromol. 2020;156:438–45.

    Article  CAS  PubMed  Google Scholar 

  19. Nogami S, Uchiyama H, Kadota K, Tozuka Y. Design of a pH-responsive oral gel formulation based on the matrix systems of gelatin/hydroxypropyl methylcellulose phthalate for controlled drug release. Int J Pharm. 2021;592:120047.

    Article  CAS  PubMed  Google Scholar 

  20. Ali SFB, Afrooz H, Hampel R, Mohamed EM, Bhattacharya R, Cook P, et al. Blend of cellulose ester and enteric polymers for delayed and enteric coating of core tablets of hydrophilic and hydrophobic drugs. Int J Pharm. 2019;567:118462.

    Article  CAS  PubMed  Google Scholar 

  21. Mašková E, Kubová K, Raimi-Abraham BT, Vllasaliu D, Vohlídalová E, Turánek J, et al. Hypromellose – A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J Control Release. 2020;324:695–727.

    Article  PubMed  Google Scholar 

  22. Gadkari PV, Tu S, Chiyarda K, Reaney MJT, Ghosh S. Rheological characterization of fenugreek gum and comparison with other galactomannans. Int J Biol Macromol. 2018;119:486–95.

    Article  CAS  PubMed  Google Scholar 

  23. Yao Y, Xia M, Wang H, Li G, Shen H, Ji G, et al. Preparation and evaluation of chitosan-based nanogels/gels for oral delivery of myricetin. Eur J Pharm Sci. 2016;91:144–53.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao X, Wang Z. A pH-sensitive microemulsion-filled gellan gum hydrogel encapsulated apigenin: Characterization and in vitro release kinetics. Colloids Surf B Biointerfac. 2019;178:245–52.

    Article  CAS  Google Scholar 

  25. Ferrari PC, Oliveira GF, Chibebe FCS, Evangelista RC. In vitro characterization of coevaporates containing chitosan for colonic drug delivery. Carbohydr Polym. 2009;78:557–63.

    Article  CAS  Google Scholar 

  26. Rezk AI, Obiweluozor FO, Choukrani G, Park CH, Kim CS. Drug release and kinetic models of anticancer drug (BTZ) from a pH-responsive alginate polydopamine hydrogel: Towards cancer chemotherapy. Int J Biol Macromol. 2019;141:388–400.

    Article  CAS  PubMed  Google Scholar 

  27. Singhvi G, Singh M. Review: in-vitro drug release characterization models. Int J Pharm Stud Res. 2011;2:77–84.

    Google Scholar 

  28. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm - Drug Res. 2010;67:217–23.

    CAS  Google Scholar 

  29. Feng Q, Wei K, Zhang K, Yang B, Tian F, Wang G, et al. One-pot solvent exchange preparation of non-swellable, thermoplastic, stretchable and adhesive supramolecular hydrogels based on dual synergistic physical crosslinking. NPG Asia Mater. 2018;10:e455–e455.

    Article  Google Scholar 

  30. Ge H, Wu Y, Woshnak LL, Mitmesser SH. Effects of hydrocolloids, acids and nutrients on gelatin network in gummies. Food Hydrocoll. 2021;113:106549.

    Article  CAS  Google Scholar 

  31. Danila A, Muresan EI, Ibanescu S-A, Popescu A, Danu M, Zaharia C, et al. Preparation, characterization, and application of polysaccharide-based emulsions incorporated with lavender essential oil for skin-friendly cellulosic support. Int J Biol Macromol. 2021;191:405–13.

    Article  CAS  PubMed  Google Scholar 

  32. Gadkari PV, Reaney MJT, Ghosh S. Assessment of gelation behaviour of fenugreek gum and other galactomannans by dynamic viscoelasticity, fractal analysis and temperature cycle. Int J Biol Macromol. 2019;126:337–44.

    Article  CAS  PubMed  Google Scholar 

  33. Knudsen JC, Karlsson AO, Ipsen R, Skibsted LH. Rheology of stirred acidified skim milk gels with different particle interactions. Colloids Surf A Physicochem Eng Asp. 2006;274:56–61.

    Article  CAS  Google Scholar 

  34. Rafe A, Razavi SMA. Dynamic viscoelastic study on the gelation of basil seed gum. Int J Food Sci Technol. 2013;48:556–63.

    Article  CAS  Google Scholar 

  35. Yang Z, Yang H, Yang H. Effects of sucrose addition on the rheology and microstructure of κ-carrageenan gel. Food Hydrocoll. 2018;75:164–73.

    Article  CAS  Google Scholar 

  36. Ramesh S, Harrysson OLA, Rao PK, Tamayol A, Cormier DR, Zhang Y, et al. Extrusion bioprinting: Recent progress, challenges, and future opportunities. Bioprinting. 2021;21:e00116.

    Article  Google Scholar 

  37. Xu JL, Zhang JC, Liu Y, Sun HJ, Wang JH. Rheological properties of a polysaccharide from floral mushrooms cultivated in Huangshan Mountain. Carbohydr Polym. 2016;139:43–49.

    Article  CAS  PubMed  Google Scholar 

  38. Ponsubha S, Jaiswal, AK. Effect of interpolymer complex formation between chondroitin sulfate and chitosan-gelatin hydrogel on physico-chemical and rheological properties. Carbohydr Polym. 2020;238:116179.

  39. Bhujbal SV, Pathak V, Zemlyanov DY, Taylor LS, Zhou Q (Tony). Physical Stability and Dissolution of Lumefantrine Amorphous Solid Dispersions Produced by Spray Anti-Solvent Precipitation. J Pharm Sci.2021;110:2423–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kadota K, Terada H, Fujimoto A, Nogami S, Uchiyama H, Tozuka Y. Formulation and evaluation of bitter taste-masked orally disintegrating tablets of high memantine hydrochloride loaded granules coated with polymer via layering technique. Int J Pharm. 2021;604:120725.

    Article  CAS  PubMed  Google Scholar 

  41. Barbosa JAC, Abdelsadig MSE, Conway BR, Merchant HA. Using zeta potential to study the ionisation behaviour of polymers employed in modified-release dosage forms and estimating their pKa. Int J Pharm X. 2019;1:100024.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ji Z, Liu H, Yu L, Duan Q, Chen Y, Chen L. pH controlled gelation behavior and morphology of gelatin/hydroxypropylmethylcellulose blend in aqueous solution. Food Hydrocoll. 2020;104:105733.

    Article  CAS  Google Scholar 

  43. Bower CK, Avena-Bustillos RJ, Olsen CW, McHugh TH, Bechtel PJ. Characterization of fish-skin gelatin gels and films containing the antimicrobial enzyme lysozyme. J Food Sci. 2006;71:M141–5.

  44. Atia NM, Hazzah HA, Gaafar PME, Abdallah OY. Diosmin Nanocrystal–Loaded Wafers for Treatment of Diabetic Ulcer: In Vitro and In Vivo Evaluation. J Pharm Sci. 2019;108:1857–71.

    Article  CAS  PubMed  Google Scholar 

  45. Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules. 2000;1:31–8.

    Article  Google Scholar 

  46. Matsunaga T, Shibayama M. Gel point determination of gelatin hydrogels by dynamic light scattering and rheological measurements. Phys Rev E - Stat Nonlinear Soft Matter Phys. 2007;76:2–5.

    Article  Google Scholar 

  47. Riedel A, Leopold CS. Degradation of omeprazole induced by enteric polymer solutions and aqueous dispersions: HPLC investigations. Drug Dev Ind Pharm. 2005;31:151–60.

    Article  CAS  PubMed  Google Scholar 

  48. Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci. 1961;50:874–5.

    Article  CAS  PubMed  Google Scholar 

  49. Higuchi T. Mechanism of Sustained- Action Medication. J Pharm Sci. 1963;52:1145–9.

    Article  CAS  PubMed  Google Scholar 

  50. Siepmann J, Peppas NA. Higuchi equation: derivation, applications, use and misuse. Int J Pharm. 2011;418:6–12.

    Article  CAS  PubMed  Google Scholar 

  51. Li Y, Wang C, Luan Y, Liu W, Chen T, Liu P et al. Preparation of pH-responsive cellulose nanofibril/sodium alginate based hydrogels for drug release. J Appl Polym Sci. 1–9 (2021). https://doi.org/10.1002/app.51647

  52. Hu Y, Tian J, Zou J, Yuan X, Li J, Liang H, et al. Partial removal of acetyl groups in konjac glucomannan significantly improved the rheological properties and texture of konjac glucomannan and κ-carrageenan blends. Int J Biol Macromol. 2019;123:1165–71.

    Article  CAS  PubMed  Google Scholar 

  53. Barbosa JAC, Al-Kauraishi MM, Smith AM, Conway BR, Merchant HA. Achieving gastroresistance without coating: Formulation of capsule shells from enteric polymers. Eur J Pharm Biopharm. 2019;144:174–9.

    Article  CAS  PubMed  Google Scholar 

  54. Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.

    Article  CAS  Google Scholar 

  55. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2012;64:163–74.

    Article  Google Scholar 

  56. Hui CY, Wu KC, Lasky RC, Kramer EJ. Case-II diffusion in polymers. I. Transient swelling. J Appl Phys. 1987;61:5129–36.

    Article  CAS  Google Scholar 

  57. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.

    Article  CAS  Google Scholar 

  58. Liu G, Lin G, Tan M, Zhou H, Chen H, Xu H, et al. Hydrazone-linked soybean protein isolate-carboxymethyl cellulose conjugates for pH-responsive controlled release of pesticides. Polym J. 2019;51:1211–22.

    Article  CAS  Google Scholar 

  59. Rekhi GS, Nellore RV, Hussain AS, Tillman LG, Malinowski HJ, Augsburger LL. Identification of critical formulation and processing variables for metoprolol tartrate extended-release (ER) matrix tablets. J Control Release. 1999;59:327–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Hiroki Iwase (Comprehensive Research Organization for Science and Society; CROSS) for providing advice and Misaki Ueda (CROSS) for technical assistance with the viscoelastic measurements. We are also grateful to Shin-Etsu Chemical Co., Ltd. (Tokyo, Japan) for the kind gift of hydroxypropyl methylcellulose (HPMC, TC-5®), hydroxypropyl methylcellulose phthalate (HPMCP, HPMCP®−55), and hydroxypropyl methylcellulose acetate succinate (HPMCAS, Shin-Etsu AQOAT® AS-LF). We are also grateful to Unitec Foods Co., Ltd. (Tokyo, Japan) and Evonik Industries (Essen, Germany) for giving us gelatin (Type B, 250 Bloom) and methacrylic acid-ethyl acrylate copolymer (Eudragit® L100-55), respectively. Satoshi Nogami was supported by Nagai Memorial Research Scholarship from the Pharmaceutical Society of Japan (Tokyo, Japan).

Funding

This research was partially supported by the Hosokawa Powder Technology Foundation (Osaka, Japan).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazunori Kadota or Yuichi Tozuka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogami, S., Kadota, K., Uchiyama, H. et al. Evaluation of the rheological and rupture properties of gelatin-based hydrogels blended with polymers to determine their drug diffusion behavior. Polym J 54, 1477–1487 (2022). https://doi.org/10.1038/s41428-022-00681-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00681-5

This article is cited by

Search

Quick links