Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Control of the molecular permeability of polysaccharide composite films utilizing a molecular imprinting approach

Abstract

Natural macromolecules are attractive feedstocks to produce useful biomaterials. Our group has developed a process for the fabrication of free-standing films made of polyion complexes (PICs) of polysaccharides, such as chondroitin sulfate C (CS) and chitosan (CHI) (CS/CHI films), using hot press techniques. In this work, we report the preparation of molecularly imprinted CS/CHI films using methylene blue (MB), a small cationic dye, and the evaluation of the molecular permeability of the films for charged permeants in phosphate-buffered saline (PBS). The CS/CHI films with MB imprinting (MB-imprinted films) were evaluated by FT-IR measurements, zeta potential measurements, and electron microscopic observation. Comparison of MB permeability of the MB-imprinted films and nonimprinted films indicated that the imprinting effect was observed for the swollen films of polysaccharide PICs that maintained their morphologies by noncovalent interactions. To evaluate the effect of the permeant on the permeation behaviors, orange II (OR) and porphyrin derivatives were used as permeants. In the case of porphyrin derivatives, having larger sizes and more charges, the inner voids of the films were not significant for the permeation behavior, but the surface charges of the films were important. CHI coating on the MB-imprinted films was also performed to improve the permeation behavior of MB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. Polym Int. 2008;57:397–430.

    Article  CAS  Google Scholar 

  2. Iijima K, Hashizume M. Application of polysaccharides as structural materials. Trends Glycosci Glycotechnol. 2015;27:67–79.

    Article  Google Scholar 

  3. Sivasankarapillai VS, Das SS, Sabir F, Sundaramahalingam MA, Colmenares JC, Prasannakumar S, et al. Progress in natural polymer engineered biomaterials for transdermal drug delivery systems. Mater Today Chem. 2021;19:100382.

    Article  CAS  Google Scholar 

  4. Khan MUA, Razak SIA, Arjan WSA, Nazir S, Anand TJS, Mehboob H, et al. Recent advances in biopolymeric composite materials for tissue engineering and regenerative medicines: a Review. Molecules. 2021;26:619.

    Article  CAS  Google Scholar 

  5. Atanase LI. Micellar drug delivery systems based on natural biopolymers. Polymers. 2021;13:477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kokabi M, Sirousazar M, Hassan ZM. PVA–clay nanocomposite hydrogels for wound dressing. Eur Polm J. 2007;43:773–81.

    Article  CAS  Google Scholar 

  7. Fwu-Long M, Shin-Shing S, Yu-Bey W, Sung-Tao L, Jen-Yeu S, Rong-Nan H. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials. 2001;22:165–73.

    Article  Google Scholar 

  8. Ulubayram K, Cakar AN, Korkusuz P, Ertan C, Hasirci N. EGF containing gelatin-based wound dressings. Biomaterials. 2001;22:1345–56.

    Article  CAS  PubMed  Google Scholar 

  9. Stoica AE, Chircov C, Grumezescu AM. Nanomaterials for wound dressings: an up-to-date overview. Molecules. 2020;25:2699.

    Article  CAS  PubMed Central  Google Scholar 

  10. Shuai L, Xin L, Yanhan R, Penghui W, Yajie P, Rong Y, et al. Mussel-inspired dual-cross-linking hyaluronic acid/ε-Polylysine hydrogel with self-healing and antibacterial properties for wound healing. ACS Appl Mater Interfaces. 2020;12:27876–27888.

    Article  Google Scholar 

  11. Hori Y, Winans AM, Irvine DJ. Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors. Acta Biomater. 2009;5:969–82.

    Article  CAS  PubMed  Google Scholar 

  12. Water JJ, Schack MM, Velazquez-Campoy A, Maltesen MJ, van de Weert M, Jorgensen L. Complex coacervates of hyaluronic acid and lysozyme: Effect on protein structure and physical stability. Eur J Pharm Sci. 2014;88:325–31.

    CAS  Google Scholar 

  13. Coimbra P, Alves P, Valente TAM, Santos R, Correia IJ, Ferreira P. Sodium hyaluronate/chitosan polyelectrolyte complex scaffolds for dental pulp regeneration: synthesis and characterization. J Biol Macromol 2011;49:573–9.

    Article  CAS  Google Scholar 

  14. Delair T. Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur J Pharm Sci. 2011;78:10–18.

    CAS  Google Scholar 

  15. Lalevée G, Sudre G, Montembault A, Meadows J, Malaise S, Crépet A, et al. Polyelectrolyte complexes via desalting mixtures of hyaluronic acidand chitosan—Physicochemical study and structural analysis. Carbohydr Polym 2016;154:86–95.

    Article  PubMed  Google Scholar 

  16. Wuff G, Sarhan A. The use of polymers with enzyme-analogous structures for the resolution of racemate. J Angew Chem Int Ed. 1972;11:341–5.

    Google Scholar 

  17. Arshady R, Mosbach K. Synthesis of substrate-selective polymers by host-guest polymerization. Makromol Chem. 1981;182:687–92.

    Article  CAS  Google Scholar 

  18. Vlatakis G, Andersson LI, Müller R, Mosbach K. Drug assay using antibody mimics made by molecular imprinting. Nature. 1993;361:645–7.

    Article  CAS  PubMed  Google Scholar 

  19. Lingxin C, Xiaoyan W, Wenhui L, Xiaqing W, Jinhua L. Molecular imprinting: perspectives and applications. Chem Soc Rev. 2016;45:2137–211.

    Article  Google Scholar 

  20. Shea KJ, Spivak DA, Sellergren B. Polymer complements to nucleotide bases. selective binding of adenine derivatives to imprinted polymers. J Am Chem Soc. 1993;115:3368–9.

    Article  CAS  Google Scholar 

  21. Hoshino Y, Kodame T, Okahata Y, Shea KJ. Peptide imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc. 1993;115:3368–9.

    Google Scholar 

  22. Hoshino Y, Kodame T, Urakami T, Kanazawa H, Kodama T, Oku N, et al. Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc. 2010;132:6644–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takeuchi T, Sunayama H. Beyond natural antibodies–a new generation of synthetic antibodies created by post-imprinting modification of molecularly imprinted polymers. Chem Commun. 2018;54:6243–51.

    Article  CAS  Google Scholar 

  24. Rachel AH, Elena P, Thomas B, Geraint M, Nicholas T. Application of molecularly imprinted polymers in the anti-doping field: sample purification and compound analysis. Analyst. 2020;145:4716–36.

    Article  Google Scholar 

  25. Tabkrich K, Angelica C, Loc TN. Epitope-imprinted polymers: applications in protein recognition and separation. RSC Adv. 2021;11:11403–14.

    Article  Google Scholar 

  26. Myriam DÁ, Antonio ME. Molecularly imprinted polymer-quantum dot materials in optical sensors: an overview of their synthesis and applications. Biosensors. 2021;11:79.

    Article  Google Scholar 

  27. Boysen RI, Schwarz LJ, Nicolau DV, Hearn MTW. Molecularly imprinted polymer membranes and thin films for the separation and sensing of biomacromolecules. J Sep Sci. 2017;40:314–55.

    Article  CAS  PubMed  Google Scholar 

  28. EL-Sharif HF, Hawkins DM, Stevenson D, Reddy SM. Determination of protein binding affinities within hydrogel-based molecularly imprinted polymers (HydroMIPs). Phys Chem Chem Phys. 2014;16:15483–9.

    Article  CAS  PubMed  Google Scholar 

  29. Armutcu C, Ozgür E, Çorman ME, Uzun L. Interface imprinted polymers with well-oriented recognition sites for selective purification of hemoglobin. Colloids Surf B: Biointerfaces. 2021;197:111435.

    Article  CAS  PubMed  Google Scholar 

  30. Perçin I, Idil N, Denizli A. Molecularly imprinted poly(N-isopropylacrylamide) thermosensitive based cryogel for immunoglobulin G purification. Process Biochem. 2019;80:181–9.

    Article  Google Scholar 

  31. Lee SW, Ichinose I, Kunitake T. Molecular imprinting of azobenzene carboxylic acid on a TiO2 ultrathin film by the surface sol-gel process. Langmuir. 1998;14:2587–2563.

    Article  Google Scholar 

  32. Hashizume M, Kunitake T. Preparation of self-supporting ultrathin films of titania by spin coating. Langmuir. 2003;19:10172–8.

    Article  CAS  Google Scholar 

  33. Lee SW, Ahmed S, Wang T, Park Y, Matsuzaki S, Tatsumi S. et al. Label-free creatinine optical sensing using molecularly imprinted titanium dioxide-polycarboxylic acid hybrid Thin Films: a preliminary study for urine sample analysis. Chemosensors. 2021;9:185

    Article  CAS  Google Scholar 

  34. Hashizume M, Kobayashi H, Ohashi M. Preparation of free–standing films of natural polysaccharides using hot press technique and their surface functionalization with biomimetic apatite. Colloids. Surf B. 2011;88:534–8.

    Article  CAS  Google Scholar 

  35. Hashizume M, Ohashi M, Kobayashi H, Tsuji Y, Iijima K. Free-standing polysaccharide composite films: improved preparation and physical properties. Colloids Surf A: Physicochem Eng. 2015;483:18–24.

    Article  CAS  Google Scholar 

  36. Iijima K, Tsuji Y, Kuriki I, Kakimoto A, Nikaido Y, Ninomiya R, et al. Control of cell adhesion and proliferation utilizing polysaccharide composite film scaffolds. Colloids Surf B: Biointerfaces. 2017;160:228–37.

    Article  CAS  PubMed  Google Scholar 

  37. Iijima K, Kimura T, Sato R, Takahashi T, Hashizume M. Kinetic analysis of molecular permeabilities of free-standing polysaccharide composite films. Macromol Chem Phys. 2017;218:1600391.

    Article  Google Scholar 

  38. Yataka Y, Suzuki A, Iijima K, Hashizume M. Enhancement of the mechanical properties of polysaccharide composite films utilizing cellulose nanofibers. Polym J. 2020;52:645–53.

    Article  CAS  Google Scholar 

  39. Decher GF. Nanoassemblies: toward layered polymeric multicomposites. Science. 1997;277:1232–7.

    Article  CAS  Google Scholar 

  40. Li Y, Wang X, Sun J. Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem Soc Rev. 2012;41:5998–6009.

    Article  CAS  PubMed  Google Scholar 

  41. Hashizume M, Murata Y, Iijima K, Shibata T. Drug loading and release behaviors of freestanding polysaccharide composite films. Polym J. 2016;48:545–50.

    Article  CAS  Google Scholar 

  42. Chen Y, Zhang Y, Feng X. An improved approach for determining permeability and diffusivity relevantto controlled release. Chem Eng Sci. 2010;65:5921–5.

    Article  CAS  Google Scholar 

  43. Hoshino Y, Jibiki T, Nakamoto M, Miura Y. Reversible pKa modulation of carboxylic acids in temperature-responsive nanoparticles through imprinted electrostatic interactions. ACS Appl Mater Interfaces. 2018;10:31096–105.

    Article  CAS  PubMed  Google Scholar 

  44. Yabushita M, Kobayashi H, Hasegawa J, Hara K, Fukuoka A. Entropically favored adsorption of cellulosic molecules onto carbon materials through hydrophobic functionalities. ChemSusChem. 2014;7:1443–50.

    Article  CAS  PubMed  Google Scholar 

  45. Hoshino Y, Miyoshi T, Nakamoto M, Miura Y. Wide-range pKa tuning of proton imprinted nanoparticles for reversible protonation of target molecules via thermal stimuli. J Mater Chem B. 2018;5:9204–10.

    Article  Google Scholar 

  46. Honda R, Gyobu T, Shimahara H, Miura Y, Hoshino Y. Electrostatic interactions between acid-/base-containing polymer nanoparticles and proteins: impact of polymerization pH. ACS Appl Polym Mater. 2020;3:3827–34.

    Article  CAS  Google Scholar 

  47. Henderson L. Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am J Physiol. 1908;21:173–9.

    Article  CAS  Google Scholar 

  48. Hasselbalch K. Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebundenen Kohlensäure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochem Z. 1917;78:112–44.

    Google Scholar 

  49. Lee SB, Lee YM, Song KW, Park MH. Preparation and properties of polyelectrolyte complex sponges composed of hyaluronic acid and chitosan and their biological behaviors. J Appl Polym Sci. 2003;90:925–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Grants-in-Aid for Scientific Research (C) from MEXT, Japan (16K05799 and 19K05588 to MH). We thank Prof. Hidenori Otsuka (Tokyo University of Science) for the zeta potential measurements. We also thank Ms. Tamao Yamamoto (Tokyo University of Science) for the additional experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mineo Hashizume.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagawa, T., Oishi, M., Yataka, Y. et al. Control of the molecular permeability of polysaccharide composite films utilizing a molecular imprinting approach. Polym J 54, 571–579 (2022). https://doi.org/10.1038/s41428-021-00605-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00605-9

This article is cited by

Search

Quick links