Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glucocorticoid receptor modulates myeloid-derived suppressor cell function via mitochondrial metabolism in immune thrombocytopenia

Abstract

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature cells and natural inhibitors of adaptive immunity. Intracellular metabolic changes in MDSCs exert a direct immunological influence on their suppressive activity. Our previous study demonstrated that high-dose dexamethasone (HD-DXM) corrected the functional impairment of MDSCs in immune thrombocytopenia (ITP); however, the MDSC population was not restored in nonresponders, and the mechanism remained unclear. In this study, altered mitochondrial physiology and reduced mitochondrial gene transcription were detected in MDSCs from HD-DXM nonresponders, accompanied by decreased levels of carnitine palmitoyltransferase-1 (CPT-1), a rate-limiting enzyme in fatty acid oxidation (FAO). Blockade of FAO with a CPT-1 inhibitor abolished the immunosuppressive function of MDSCs in HD-DXM responders. We also report that MDSCs from ITP patients had lower expression of the glucocorticoid receptor (GR), which can translocate into mitochondria to regulate the transcription of mitochondrial DNA (mtDNA) as well as the level of oxidative phosphorylation. It was confirmed that the expression of CPT-1 and mtDNA-encoded genes was downregulated in GR-siRNA-treated murine MDSCs. Finally, by establishing murine models of active and passive ITP via adoptive transfer of DXM-modulated MDSCs, we confirmed that GR-silenced MDSCs failed to alleviate thrombocytopenia in mice with ITP. In conclusion, our study indicated that impaired aerobic metabolism in MDSCs participates in the pathogenesis of glucocorticoid resistance in ITP and that intact control of MDSC metabolism by GR contributes to the homeostatic regulation of immunosuppressive cell function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All datasets generated and/or analyzed during the current study are available from the corresponding authors.

References

  1. Zufferey A, Kapur R, Semple JW. Pathogenesis and therapeutic mechanisms in immune thrombocytopenia (ITP). J Clin Med. 2017;6:16.

    Article  PubMed Central  CAS  Google Scholar 

  2. Semple JW, Rebetz J, Maouia A, Kapur R. An update on the pathophysiology of immune thrombocytopenia. Curr Opin Hematol. 2020;27:423–9.

    Article  CAS  PubMed  Google Scholar 

  3. Cooper N, Ghanima W. Immune thrombocytopenia. N. Engl J Med 2019;381:945–55.

    Article  PubMed  Google Scholar 

  4. Guo L, Yang L, Speck ER, Aslam R, Kim M, McKenzie CGJ, et al. Allogeneic platelet transfusions prevent murine T-cell-mediated immune thrombocytopenia. Blood. 2014;123:422–7.

    Article  CAS  PubMed  Google Scholar 

  5. Guo L, Kapur R, Aslam R, Speck ER, Zufferey A, Zhao Y, et al. CD20+ B-cell depletion therapy suppresses murine CD8+ T-cell-mediated immune thrombocytopenia. Blood. 2016;127:735–8.

    Article  CAS  PubMed  Google Scholar 

  6. Audia S, Mahévas M, Samson M, Godeau B, Bonnotte B. Pathogenesis of immune thrombocytopenia. Autoimmun Rev 2017;16:620–32.

    Article  CAS  PubMed  Google Scholar 

  7. Olsson B, Andersson PO, Jernas M, Jacobsson S, Carlsson B, Carlsson LMS, et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med 2003;9:1123–4.

    Article  CAS  PubMed  Google Scholar 

  8. Chow L, Aslam R, Speck ER, Kim M, Cridland N, Webster ML, et al. A murine model of severe immune thrombocytopenia is induced by antibody- and CD8+ T cell-mediated responses that are differentially sensitive to therapy. Blood. 2010;115:1247–53.

    Article  CAS  PubMed  Google Scholar 

  9. Vrbensky JR, Arnold DM, Kelton JG, Smith JW, Jaffer AM, Larché M, et al. Increased cytotoxic potential of CD8(+) T cells in immune thrombocytopenia. Br J Haematol. 2020;188:e72–e76.

    Article  PubMed  Google Scholar 

  10. Ma L, Simpson E, Li J, Xuan M, Xu M, Baker L, et al. CD8+ T cells are predominantly protective and required for effective steroid therapy in murine models of immune thrombocytopenia. Blood. 2015;126:247–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aslam R, Hu Y, Gebremeskel S, Segel GB, Speck ER, Guo L, et al. Thymic retention of CD4+CD25+FoxP3+ T regulatory cells is associated with their peripheral deficiency and thrombocytopenia in a murine model of immune thrombocytopenia. Blood. 2012;120:2127–32.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao H, Ma Y, Li D, Sun T, Li L, Li P, et al. Low-dose chidamide restores immune tolerance in ITP in mice and humans. Blood. 2019;133:730–42.

    Article  CAS  PubMed  Google Scholar 

  13. Kostic M, Zivkovic N, Cvetanovic A, Marjanović G. CD4(+) T cell phenotypes in the pathogenesis of immune thrombocytopenia. Cell Immunol 2020;351:104096.

    Article  CAS  PubMed  Google Scholar 

  14. Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol 2018;19:108–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cole K, Pravoverov K, Talmadge JE. Role of myeloid-derived suppressor cells in metastasis. Cancer Metastasis Rev 2021;40:391–411.

    Article  PubMed  Google Scholar 

  16. Siret C, Collignon A, Silvy F, Robert S, Cheyrol T, André P, et al. Deciphering the crosstalk between myeloid-derived suppressor cells and regulatory T cells in pancreatic ductal adenocarcinoma. Front Immunol 2019;10:3070.

    Article  CAS  PubMed  Google Scholar 

  17. Hou Y, Feng Q, Xu M, Li G, Liu X, Sheng Z, et al. High-dose dexamethasone corrects impaired myeloid-derived suppressor cell function via Ets1 in immune thrombocytopenia. Blood. 2016;127:1587–97.

    Article  CAS  PubMed  Google Scholar 

  18. Lambert MP, Gernsheimer TB. Clinical updates in adult immune thrombocytopenia. Blood. 2017;129:2829–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weikum ER, Knuesel MT, Ortlund EA, Yamamoto KR. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol 2017;18:159–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sasse SK, Gruca M, Allen MA, Kadiyala V, Song T, Gally F, et al. Nascent transcript analysis of glucocorticoid crosstalk with TNF defines primary and cooperative inflammatory repression. Genome Res 2019;29:1753–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lapp HE, Bartlett AA, Hunter RG. Stress and glucocorticoid receptor regulation of mitochondrial gene expression. J Mol Endocrinol. 2019;62:R121–r128.

    Article  CAS  PubMed  Google Scholar 

  22. Demonacos C, Djordjevic-Markovic R, Tsawdaroglou N, Sekeris CE. The mitochondrion as a primary site of action of glucocorticoids: the interaction of the glucocorticoid receptor with mitochondrial DNA sequences showing partial similarity to the nuclear glucocorticoid responsive elements. J Steroid Biochem Mol Biol 1995;55:43–55.

    Article  CAS  PubMed  Google Scholar 

  23. Nicholls TJ, Minczuk M. In D-loop: 40 years of mitochondrial 7S DNA. Exp Gerontol 2014;56:175–81.

    Article  CAS  PubMed  Google Scholar 

  24. DiMauro S. A brief history of mitochondrial pathologies. Int J Mol Sci. 2019;20:5643.

    Article  CAS  PubMed Central  Google Scholar 

  25. Greenfield A, Braude P, Flinter F, Lovell-Badge R, Ogilvie C, Perry ACF. Assisted reproductive technologies to prevent human mitochondrial disease transmission. Nat Biotechnol 2017;35:1059–68.

    Article  CAS  PubMed  Google Scholar 

  26. Dong Z, Pu L, Cui H. Mitoepigenetics and its emerging roles in cancer. Front Cell Dev Biol 2020;8:4.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Frazier AE, Vincent AE, Turnbull DM, Thorburn DR, Taylor RW. Assessment of mitochondrial respiratory chain enzymes in cells and tissues. Methods Cell Biol. 2020;155:121–56.

    Article  CAS  PubMed  Google Scholar 

  28. Murphy MP, O’Neill LAJ. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell. 2018;174:780–4.

    Article  CAS  PubMed  Google Scholar 

  29. Khoa LTP, Tsan YC, Mao F, Kremer DM, Sajjakulnukit P, Zhang L, et al. Histone acetyltransferase MOF blocks acquisition of quiescence in ground-state ESCs through activating fatty acid oxidation. Cell Stem Cell. 2020;27:441–458.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gaber T, Strehl C, Buttgereit F. Metabolic regulation of inflammation. Nat Rev Rheumatol 2017;13:267–79.

    Article  PubMed  Google Scholar 

  31. Caputa G, Castoldi A, Pearce EJ. Metabolic adaptations of tissue-resident immune cells. Nat Immunol 2019;20:793–801.

    Article  CAS  PubMed  Google Scholar 

  32. He C, Carter AB. The metabolic prospective and redox regulation of macrophage polarization. J Clin Cell Immunol. 2015;6:371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Michaeloudes C, Bhavsar PK, Mumby S, Xu B, Hui CKM, Chung KF, et al. Role of metabolic reprogramming in pulmonary innate immunity and its impact on lung diseases. J Innate Immun 2020;12:31–46.

    Article  CAS  PubMed  Google Scholar 

  34. Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342:1242454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yan D, Adeshakin AO, Xu M, Afolabi LO, Zhang G, Chen YH, et al. Lipid metabolic pathways confer the immunosuppressive function of myeloid-derived suppressor cells in tumor. Front Immunol 2019;10:1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Al-Khami AA, Zheng L, Del Valle L, Hossain F, Wyczechowska D, Zabaleta J, et al. Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. Oncoimmunology. 2017;6:e1344804.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sica A, Strauss L. Energy metabolism drives myeloid-derived suppressor cell differentiation and functions in pathology. J Leukoc Biol 2017;102:325–34.

    Article  CAS  PubMed  Google Scholar 

  38. Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, Zheng L, Reiss K, et al. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res 2015;3:1236–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yao Y, Yao Q, Xue J, Tian X, An Q, Cui L, et al. Dexamethasone inhibits pancreatic tumor growth in preclinical models: Involvement of activating glucocorticoid receptor. Toxicol Appl Pharmacol 2020;401:115118.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou J, Zhou Y, Wen J, Sun X, Zhang X. Circulating myeloid-derived suppressor cells predict disease activity and treatment response in patients with immune thrombocytopenia. Braz J Med Biol Res 2017;50:e5637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shao X, Wu B, Cheng L, Li F, Zhan Y, Liu C, et al. Distinct alterations of CD68(+)CD163(+) M2-like macrophages and myeloid-derived suppressor cells in newly diagnosed primary immune thrombocytopenia with or without CR after high-dose dexamethasone treatment. J Transl Med 2018;16:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009;9:162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer 2019;120:16–25.

    Article  CAS  PubMed  Google Scholar 

  44. Draghiciu O, Lubbers J, Nijman HW, Daemen T. Myeloid derived suppressor cells-an overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology. 2015;4:e954829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Boros P, Ochando J, Zeher M. Myeloid derived suppressor cells and autoimmunity. Hum Immunol 2016;77:631–6.

    Article  CAS  PubMed  Google Scholar 

  46. Qu Q, Zeng F, Liu X, Wang QJ, Deng F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis 2016;7:e2226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang H, Lu J, Dolezal J, Kulkarni S, Zhang W, Chen A, et al. Inhibition of hepatocellular carcinoma by metabolic normalization. PLoS One 2019;14:e0218186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ganeshan K, Chawla A. Metabolic regulation of immune responses. Annu Rev Immunol 2014;32:609–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol 2016;16:553–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Buck MD, O'Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, et al. Mitochondrial Dynamics Controls T. Cell Fate Metab Program Cell. 2016;166:63–76.

    CAS  Google Scholar 

  51. Seok J, Jung HS, Park S, Lee JO, Kim CJ, Kim GJ. Alteration of fatty acid oxidation by increased CPT1A on replicative senescence of placenta-derived mesenchymal stem cells. Stem Cell Res Ther 2020;11:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klein Geltink RI, O'Sullivan D, Corrado M, Bremser A, Buck MD, Buescher JM, et al. Mitochondrial Priming by CD28. Cell. 2017;171:385–97.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Clémot M, Sênos Demarco R, Jones DL. Lipid mediated regulation of adult stem cell behavior. Front Cell Dev Biol. 2020;8:115.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pompura SL, Wagner A, Kitz A, LaPerche J, Yosef N, Dominguez-Villar M, et al. Oleic acid restores suppressive defects in tissue-resident FOXP3 Tregs from patients with multiple sclerosis. J Clin Invest. 2021;131:e138519.

  55. Cader MZ, Boroviak K, Zhang Q, Assadi G, Kempster SL, Sewell GW, et al. C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nat Immunol 2016;17:1046–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang M, Chen J, Wei W. Dimerization of glucocorticoid receptors and its role in inflammation and immune responses. Pharmacol Res 2021;166:105334.

    Article  CAS  PubMed  Google Scholar 

  57. Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, McKee DD, et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell. 2002;110:93–105.

    Article  CAS  PubMed  Google Scholar 

  58. Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R, et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell. 1998;93:531–41.

    Article  CAS  PubMed  Google Scholar 

  59. Kobayashi A, Azuma K, Ikeda K, Inoue S. Mechanisms underlying the regulation of mitochondrial respiratory chain complexes by nuclear steroid receptors. Int J Mol Sci. 2020;21:6683.

    Article  CAS  PubMed Central  Google Scholar 

  60. Hunter RG, Seligsohn M, Rubin TG, Griffiths BB, Ozdemir Y, Pfaff DW, et al. Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor. Pnas USA. 2016;113:9099–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Williams EL, Stimpson ML, Lait P, Schewitz-Bowers LP, Jones LV, Dhanda AD, et al. Glucocorticoid treatment in patients with newly diagnosed immune thrombocytopenia switches CD14(++) CD16(+) intermediate monocytes from a pro-inflammatory to an anti-inflammatory phenotype. Br J Haematol 2021;192:375–84.

    Article  CAS  PubMed  Google Scholar 

  62. Kapur R. Monocytes as potential therapeutic sensors in glucocorticoid-treated newly diagnosed immune thrombocytopenia. Br J Haematol 2021;192:233–4.

    Article  PubMed  Google Scholar 

  63. Arumugam R, Horowitz E, Lu D, Collier JJ, Ronnebaum S, Fleenor D, et al. The interplay of prolactin and the glucocorticoids in the regulation of beta-cell gene expression, fatty acid oxidation, and glucose-stimulated insulin secretion: implications for carbohydrate metabolism in pregnancy. Endocrinology. 2008;149:5401–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Blazar BR, MacDonald KPA, Hill GR. Immune regulatory cell infusion for graft-versus-host disease prevention and therapy. Blood. 2018;131:2651–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Crow AR, Kapur R, Koernig S, Campbell IK, Jen C-C, Mott PJ, et al. Treating murine inflammatory diseases with an anti-erythrocyte antibody. Sci Transl Med. 2019;11:eaau8217.

  66. Nakao T, Nakamura T, Masuda K, Matsuyama T, Ushigome H, Ashihara E, et al. Dexamethasone prolongs cardiac allograft survival in a murine model through myeloid-derived suppressor cells. Transplant Proc 2018;50:299–304.

    Article  CAS  PubMed  Google Scholar 

  67. Radloff H, Groher W. [Development and therapy of pseudarthroses of the humerus]. Arch Orthop Unfallchir. 1971;71:205–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81900121, 81770133, 81973994, and 81770114), Major Research Plan of National Natural Science Foundation of China (No. 91942306), Clinical Research Center of Shandong University (No. 2020SDUCRCC009), Graduate Education Reform Project of Shandong University (No. XYJG2020141), State Key Clinical Specialty of China for Blood Disorders, and Young Taishan Scholar Foundation of Shandong Province (No. tsqn201909175).

Author information

Authors and Affiliations

Authors

Contributions

YH, JP and JX designed the research and wrote the manuscript. JX, SW, LW, HW, XN and SL performed the experiments and analyzed the data. YH, GL and DL provided technical and instrumental support. YH, JP and MH provided conceptual advice and edited the manuscript. YH and JP supervised the study and provided funding support.

Corresponding authors

Correspondence to Yu Hou or Jun Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Xie, J., Wang, S. et al. Glucocorticoid receptor modulates myeloid-derived suppressor cell function via mitochondrial metabolism in immune thrombocytopenia. Cell Mol Immunol 19, 764–776 (2022). https://doi.org/10.1038/s41423-022-00859-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-022-00859-0

Keywords

This article is cited by

Search

Quick links