Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A wave of Foxp3+ regulatory T cell accumulation in the neonatal liver plays unique roles in maintaining self-tolerance

Abstract

Newborn animals require tightly regulated local and systemic immune environments to govern the development and maturation of multiple organs/tissues even though the immune system itself is far from mature during the neonatal period. Regulatory T cells (Tregs) are essential for maintaining immune tolerance/homeostasis and modulating inflammatory responses. The features of Tregs in the neonatal liver under steady-state conditions are not well understood. The present study aimed to investigate the phenotype, functions, and significance of neonatal Tregs in the liver. We found a wave of thymus-derived Treg influx into the liver during 1–2 weeks of age. Depletion of these Tregs between days 7 and 11 after birth rapidly resulted in Th1-type liver inflammation and metabolic disorder. More Tregs in the neonatal liver than in the spleen underwent MHC II-dependent activation and proliferation, and the liver Tregs acquired stronger suppressive functions. The transcriptomic profile of these neonatal liver Tregs showed elevated expression of PPARγ and T-bet and features of Tregs that utilize lipid metabolic machinery and are capable of regulating Th1 responses. The accumulation of Tregs with unique features in the neonatal liver is critical to ensure self-tolerance and liver maturation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grijalva, J. & Vakili, K. Neonatal liver physiology. Semin Pedia. Surg. 22, 185–189 (2013).

    Google Scholar 

  2. Nakagaki B. N., et al. Immune and metabolic shifts during neonatal development reprogram liver identity and function. J. Hepatol. 69, 1294–1307 (2018).

  3. van Elburg, R. M., Fetter, W. P., Bunkers, C. M. & Heymans, H. S. Intestinal permeability in relation to birth weight and gestational and postnatal age. Arch. Dis. Child Fetal Neonatal Ed. 88, F52–55 (2003).

    PubMed  PubMed Central  Google Scholar 

  4. Weaver, L. T., Laker, M. F., Nelson, R. & Lucas, A. Milk feeding and changes in intestinal permeability and morphology in the newborn. J. Pedia. Gastroenterol. Nutr. 6, 351–358 (1987).

    CAS  Google Scholar 

  5. Prandota, J. Possible pathomechanisms of sudden infant death syndrome: key role of chronic hypoxia, infection/inflammation states, cytokine irregularities, and metabolic trauma in genetically predisposed infants. Am. J. Ther. 11, 517–546 (2004).

    PubMed  Google Scholar 

  6. Godfrey, V. L., Wilkinson, J. E. & Russell, L. B. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am. J. Pathol. 138, 1379–1387 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    CAS  PubMed  Google Scholar 

  8. Huter, E. N. et al. TGF-beta-induced Foxp3+ regulatory T cells rescue scurfy mice. Eur. J. Immunol. 38, 1814–1821 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fontenot, J. D. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22, 329–341 (2005).

    CAS  PubMed  Google Scholar 

  10. Yang, S., Fujikado, N., Kolodin, D., Benoist, C. & Mathis, D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348, 589–594 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lathrop, S. K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hayakawa, S., Ohno, N., Okada, S. & Kobayashi, M. Significant augmentation of regulatory T cell numbers occurs during the early neonatal period. Clin. Exp. Immunol. 190, 268–279 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Maria, A., English, K. A. & Gorham, J. D. Appropriate development of the liver Treg compartment is modulated by the microbiota and requires TGF-beta and MyD88. J. Immunol. Res. 2014, 279736 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Tucker, R. M., Feldman, A. G., Fenner, E. K. & Mack, C. L. Regulatory T cells inhibit Th1 cell-mediated bile duct injury in murine biliary atresia. J. Hepatol. 59, 790–796 (2013).

    CAS  PubMed  Google Scholar 

  15. Lages, C. S., Simmons, J., Chougnet, C. A. & Miethke, A. G. Regulatory T cells control the CD8 adaptive immune response at the time of ductal obstruction in experimental biliary atresia. Hepatology 56, 219–227 (2012).

    CAS  PubMed  Google Scholar 

  16. Wawman, R. E., Bartlett, H. & Oo, Y. H. Regulatory T cell metabolism in the hepatic microenvironment. Front Immunol. 8, 1889 (2017).

    PubMed  Google Scholar 

  17. Chen, Y. Y. et al. Human intrahepatic regulatory T cells are functional, require IL-2 from effector cells for survival, and are susceptible to Fas ligand-mediated apoptosis. Hepatology 64, 138–150 (2016).

    CAS  PubMed  Google Scholar 

  18. Thornton, A. M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433–3441 (2010).

    CAS  PubMed  Google Scholar 

  19. Weiss, J. M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209, 1723–1742 (2012). S1721.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yadav, M. et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J. Exp. Med. 209, 1713–1722 (2012). S1711–1719.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tuncel J., Benoist C., Mathis D. T cell anergy in perinatal mice is promoted by T reg cells and prevented by IL-33. J. Exp. Med. 2019, Apr 15. pii: jem.20182002. https://doi.org/10.1084/jem.20182002.

  22. Attias M., Al-Aubodah T., Piccirillo C. A. Mechanisms of human FoxP3(+) Treg cell development and function in health and disease. Clin. Exp. Immunol. 2019,  Mar 12. https://doi.org/10.1111/cei.13290.

  23. Levine, A. G., Arvey, A., Jin, W. & Rudensky, A. Y. Continuous requirement for the TCR in regulatory T cell function. Nat. Immunol. 15, 1070–1078 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Miao, T. et al. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J. Exp. Med 214, 1787–1808 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Levine, A. G. et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature 546, 421–425 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Littringer, K. et al. Common features of regulatory T cell specialization during Th1 responses. Front Immunol. 9, 1344 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. Cipolletta, D., Cohen, P., Spiegelman, B. M., Benoist, C. & Mathis, D. Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and PPARgamma effects. Proc. Natl Acad. Sci. USA 112, 482–487 (2015).

    CAS  PubMed  Google Scholar 

  28. Li, C. et al. TCR transgenic mice reveal stepwise, multi-site acquisition of the distinctive fat-treg phenotype. Cell 174, 285–299 (2018). e212.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Leventhal, D. S. et al. Dendritic cells coordinate the development and homeostasis of organ-specific regulatory T cells. Immunity 44, 847–859 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vahl, J. C. et al. Continuous T cell receptor signals maintain a functional regulatory T cell pool. Immunity 41, 722–736 (2014).

    CAS  PubMed  Google Scholar 

  31. Malchow, S. et al. Aire enforces immune tolerance by directing autoreactive T cells into the regulatory T cell lineage. Immunity 44, 1102–1113 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Metzger, T. C. & Anderson, M. S. Control of central and peripheral tolerance by Aire. Immunol. Rev. 241, 89–103 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gardner, J. M. et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 321, 843–847 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C. C. Aire regulates negative selection of organ-specific T cells. Nat. Immunol. 4, 350–354 (2003).

    CAS  PubMed  Google Scholar 

  35. Lindmark, E. et al. AIRE expressing marginal zone dendritic cells balances adaptive immunity and T-follicular helper cell recruitment. J. Autoimmun. 42, 62–70 (2013).

    CAS  PubMed  Google Scholar 

  36. Hirayama, K. et al. Development of intestinal flora of human-flora-associated (HFA) mice in the intestine of their offspring. Exp. Anim. 44, 219–222 (1995).

    CAS  PubMed  Google Scholar 

  37. Schrage, A. et al. Enhanced T cell transmigration across the murine liver sinusoidal endothelium is mediated by transcytosis and surface presentation of chemokines. Hepatology 48, 1262–1272 (2008).

    PubMed  Google Scholar 

  38. Scharschmidt, T. C. et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43, 1011–1021 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Scharschmidt, T. C. et al. Commensal microbes and hair follicle morphogenesis coordinately drive treg migration into neonatal skin. Cell Host Microbe 21, 467–477 (2017). e465.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hashimoto, K. & Ogawa, Y. Epigenetic switching and neonatal nutritional environment. Adv. Exp. Med. Biol. 1012, 19–25 (2018).

    CAS  PubMed  Google Scholar 

  41. Yang, S. L. et al. Associations between inflammatory cytokines and organ damage in pediatric patients with hemophagocytic lymphohistiocytosis. Cytokine 85, 14–17 (2016).

    CAS  PubMed  Google Scholar 

  42. Mack, C. L. et al. Biliary atresia is associated with CD4+ Th1 cell-mediated portal tract inflammation. Pedia. Res. 56, 79–87 (2004).

    CAS  Google Scholar 

  43. Lakshminarayanan, B. & Davenport, M. Biliary atresia: a comprehensive review. J. Autoimmun. 73, 1–9 (2016).

    PubMed  Google Scholar 

  44. Koch, M. A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nosko, A. et al. T-bet enhances regulatory T cell fitness and directs control of Th1 responses in crescentic GN. J. Am. Soc. Nephrol. 28, 185–196 (2017).

    CAS  PubMed  Google Scholar 

  46. Xiong, Y., Ahmad, S., Iwami, D., Brinkman, C. C. & Bromberg, J. S. T-bet regulates natural regulatory T cell afferent lymphatic migration and suppressive function. J. Immunol. 196, 2526–2540 (2016).

    CAS  PubMed  Google Scholar 

  47. Kumar, S. K. & Bhat, B. V. Distinct mechanisms of the newborn innate immunity. Immunol. Lett. 173, 42–54 (2016).

    CAS  PubMed  Google Scholar 

  48. Decaux, J. F., Ferre, P., Robin, D., Robin, P. & Girard, J. Decreased hepatic fatty acid oxidation at weaning in the rat is not linked to a variation of malonyl-CoA concentration. J. Biol. Chem. 263, 3284–3289 (1988).

    CAS  PubMed  Google Scholar 

  49. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vasanthakumar, A. et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat. Immunol. 16, 276–285 (2015).

    CAS  PubMed  Google Scholar 

  51. Smigiel, K. S. et al. CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J. Exp. Med. 211, 121–136 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wing, J. B. et al. A distinct subpopulation of CD25(-) T-follicular regulatory cells localizes in the germinal centers. Proc. Natl Acad. Sci. USA 114, E6400–E6409 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ferreira, R. C. et al. Cells with Treg-specific FOXP3 demethylation but low CD25 are prevalent in autoimmunity. J. Autoimmun. 84, 75–86 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Toomer K. H., Malek T. R. Cytokine signaling in the development and homeostasis of regulatory T cells. Cold Spring Harb. Perspect. Biol. 2018; 10. pii: a028597. https://doi.org/10.1101/cshperspect.a028597.

  55. Raynor, J. et al. IL-6 and ICOS antagonize bim and promote regulatory T cell accrual with age. J. Immunol. 195, 944–952 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Professors Yu Zhang, Jun Zhang, Wenling Han, Ying Wang, Chao Zhong, Xiaoyan Qiu, and Dan Lv (Peking University, China) for critical comments, helpful discussions, and critical reagents. This work was supported by grants from the National Key Research and Development Program of China (2017YFA0104500), the National Natural Science Foundation of China (81471525, 31671244, and 31872734, Q.G.; 81601975, K.Z.), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (81621001), and the Non-Profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2018PT31039).

Author information

Authors and Affiliations

Authors

Contributions

Q.G., M.L., and K.Z. designed the research, analyzed the data, and wrote the paper. M.L., W.Z., L.J., and Y.W. performed the research. W.W., K.W., J.H., R.J., X.S., X.X., Y.C., J.G., X.H., Y.S., and W.F. contributed reagents and technical support. H.W. helped with flow cytometry. X.Z. and K.Z. edited the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Hounan Wu, Kunshan Zhang or Qing Ge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhao, W., Wang, Y. et al. A wave of Foxp3+ regulatory T cell accumulation in the neonatal liver plays unique roles in maintaining self-tolerance. Cell Mol Immunol 17, 507–518 (2020). https://doi.org/10.1038/s41423-019-0246-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0246-9

Keywords

This article is cited by

Search

Quick links