Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PDCD5 regulates iNKT cell terminal maturation and iNKT1 fate decision

Abstract

Invariant natural killer T1 (iNKT1) cells are characterized by the preferential expression of T-box transcription factor T-bet (encoded by Tbx21) and the production of cytokine IFN-γ, but the relationship between the developmental process and iNKT1 lineage diversification in the thymus remains elusive. We report in the present study a crucial role of programmed cell death 5 (PDCD5) in iNKT cell terminal maturation and iNKT1 fate determination. Mice with T cell-specific deletion of PDCD5 had decreased numbers of thymic and peripheral iNKT cells with a predominantly immature phenotype and defects in response to α-galactosylceramide. Loss of PDCD5 also selectively abolished the iNKT1 lineage by reducing T-bet expression in iNKT cells at an early thymic developmental stage (before CD44 upregulation). We further demonstrated that TOX2, one of the high mobility group proteins that was highly expressed in iNKT cells at stage 1 and could be stabilized by PDCD5, promoted the permissive histone H3K4me3 modification in the promoter region of Tbx21. These data indicate a pivotal and unique role of PDCD5/TOX2 in iNKT1 lineage determination. They also suggest that the fate of iNKT1 may be programmed at the developmental stage of iNKT cells in the thymus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Georgiev, H., Ravens, I., Benarafa, C., Forster, R. & Bernhardt, G. Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nat. Commun. 7, 13116 (2016).

    Article  CAS  Google Scholar 

  2. Bendelac, A., Savage, P. B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  Google Scholar 

  3. Godfrey, D. I., Stankovic, S. & Baxter, A. G. Raising the NKT cell family. Nat. Immunol. 11, 197–206 (2010).

    Article  CAS  Google Scholar 

  4. Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23, 877–900 (2005).

    Article  CAS  Google Scholar 

  5. Ma, C. S., Nichols, K. E. & Tangye, S. G. Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu. Rev. Immunol. 25, 337–379 (2007).

    Article  CAS  Google Scholar 

  6. Brennan, P. J., Brigl, M. & Brenner, M. B. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat. Rev. Immunol. 13, 101–117 (2013).

    Article  CAS  Google Scholar 

  7. Constantinides, M. G. & Bendelac, A. Transcriptional regulation of the NKT cell lineage. Curr. Opin. Immunol. 25, 161–167 (2013).

    Article  CAS  Google Scholar 

  8. Lee, Y. J., Holzapfel, K. L., Zhu, J., Jameson, S. C. & Hogquist, K. A. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 14, 1146–1154 (2013).

    Article  CAS  Google Scholar 

  9. Das, R., Sant’Angelo, D. B. & Nichols, K. E. Transcriptional control of invariant NKT cell development. Immunol. Rev. 238, 195–215 (2010).

    Article  CAS  Google Scholar 

  10. Dashtsoodol, N. et al. Alternative pathway for the development of Valpha14(+) NKT cells directly from CD4(-)CD8(-) thymocytes that bypasses the CD4(+)CD8(+) stage. Nat. Immunol. 18, 274–282 (2017).

    Article  CAS  Google Scholar 

  11. Townsend, M. J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity 20, 477–494 (2004).

    Article  CAS  Google Scholar 

  12. Gordy, L. E. et al. IL-15 regulates homeostasis and terminal maturation of NKT cells. J. Immunol. 187, 6335–6345 (2011).

    Article  CAS  Google Scholar 

  13. Wu, J. et al. iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions. J. Clin. Invest. 124, 1685–1698 (2014).

    Article  CAS  Google Scholar 

  14. Zhang, L. et al. Mammalian target of rapamycin complex 1 orchestrates invariant NKT cell differentiation and effector function. J. Immunol. 193, 1759–1765 (2014).

    Article  CAS  Google Scholar 

  15. Wei, J., Yang, K. & Chi, H. Cutting edge: Discrete functions of mTOR signaling in invariant NKT cell development and NKT17 fate decision. J. Immunol. 193, 4297–4301 (2014).

    Article  CAS  Google Scholar 

  16. Yu, S. & Cantorna, M. T. The vitamin D receptor is required for iNKT cell development. Proc. Natl. Acad. Sci. USA 105, 5207–5212 (2008).

    Article  CAS  Google Scholar 

  17. Yue, X., Izcue, A. & Borggrefe, T. Essential role of Mediator subunit Med1 in invariant natural killer T-cell development. Proc. Natl. Acad. Sci. USA 108, 17105–17110 (2011).

    Article  CAS  Google Scholar 

  18. D’Cruz, L. M., Stradner, M. H., Yang, C. Y. & Goldrath, A. W. E and Id proteins influence invariant NKT cell sublineage differentiation and proliferation. J. Immunol. 192, 2227–2236 (2014).

    Article  Google Scholar 

  19. Hu, T. et al. Increased level of E protein activity during invariant NKT development promotes differentiation of invariant NKT2 and invariant NKT17 subsets. J. Immunol. 191, 5065–5073 (2013).

    Article  CAS  Google Scholar 

  20. Felices, M. & Berg, L. J. The Tec kinases Itk and Rlk regulate NKT cell maturation, cytokine production, and survival. J. Immunol. 180, 3007–3018 (2008).

    Article  CAS  Google Scholar 

  21. Qi, Q. et al. A unique role for ITK in survival of invariant NKT cells associated with the p53-dependent pathway in mice. J. Immunol. 188, 3611–3619 (2012).

    Article  CAS  Google Scholar 

  22. Yi, Z., Stunz, L. L. & Bishop, G. A. TNF receptor associated factor 3 plays a key role in development and function of invariant natural killer T cells. J. Exp. Med. 210, 1079–1086 (2013).

    Article  CAS  Google Scholar 

  23. Salio, M. et al. Essential role for autophagy during invariant NKT cell development. Proc. Natl. Acad. Sci. USA 111, E5678–E5687 (2014).

    Article  CAS  Google Scholar 

  24. Pei, B. et al. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation. J. Immunol. 194, 5872–5884 (2015).

    Article  CAS  Google Scholar 

  25. Pyaram, K., Sen, J. M. & Chang, C. H. Temporal regulation of Wnt/beta-catenin signaling is important for invariant NKT cell development and terminal maturation. Mol. Immunol. 85, 47–56 (2017).

    Article  CAS  Google Scholar 

  26. Li, G., Ma, D. & Chen, Y. Cellular functions of programmed cell death 5. Biochim. Biophys. Acta. 1863, 572–580 (2016).

    Article  CAS  Google Scholar 

  27. Li, G. et al. Deletion of Pdcd5 in mice led to the deficiency of placenta development and embryonic lethality. Cell Death Dis. 8, e2811 (2017).

    Article  CAS  Google Scholar 

  28. Xu, L. et al. PDCD5 interacts with p53 and functions as a positive regulator in the p53 pathway. Apoptosis 17, 1235–1245 (2012).

    Article  CAS  Google Scholar 

  29. Essers, P. B. et al. The von Hippel-Lindau tumor suppressor regulates programmed cell death 5-mediated degradation of Mdm2. Oncogene 34, 771–779 (2015).

    Article  CAS  Google Scholar 

  30. Xu, L. et al. PDCD5 interacts with Tip60 and functions as a cooperator in acetyltransferase activity and DNA damage-induced apoptosis. Neoplasia 11, 345–354 (2009).

    Article  CAS  Google Scholar 

  31. Choi, H. K. et al. Programmed cell death 5 mediates HDAC3 decay to promote genotoxic stress response. Nat. Commun. 6, 7390 (2015).

    Article  Google Scholar 

  32. Xu, H. Y. et al. Transfection of PDCD5 effect on the biological behavior of tumor cells and sensitized gastric cancer cells to cisplatin-induced apoptosis. Dig. Dis. Sci. 57, 1847–1856 (2012).

    Article  CAS  Google Scholar 

  33. Yin, A., Jiang, Y., Zhang, X., Zhao, J. & Luo, H. Transfection of PDCD5 sensitizes colorectal cancer cells to cisplatin-induced apoptosis in vitro and in vivo. Eur. J. Pharmacol. 649, 120–126 (2010).

    Article  CAS  Google Scholar 

  34. Wang, Y. et al. An alternative form of paraptosis-like cell death, triggered by TAJ/TROY and enhanced by PDCD5 overexpression. J. Cell Sci. 117(Pt 8), 1525–1532 (2004).

    Article  CAS  Google Scholar 

  35. Wang, J., Guan, Z. & Ge, Z. Plasma and synovial fluid programmed cell death 5 (PDCD5) levels are inversely associated with TNF-alpha and disease activity in patients with rheumatoid arthritis. Biomarkers 18, 155–159 (2013).

    Article  Google Scholar 

  36. Wang, J. F. et al. Programmed cell death 5 correlates with disease activity and interleukin-17 in serum and synovial fluid of rheumatoid arthritis patients. Chin. Med J. (Engl.). 126, 296–299 (2013).

    CAS  PubMed  Google Scholar 

  37. Chen, Y. et al. Serum programmed cell death protein 5 (PDCD5) levels is upregulated in liver diseases. J. Immunoass. Immunochem. 34, 294–304 (2013).

    Article  CAS  Google Scholar 

  38. Mansour, S. et al. Structural and functional changes of the invariant NKT clonal repertoire in early rheumatoid arthritis. J. Immunol. 195, 5582–5591 (2015).

    Article  CAS  Google Scholar 

  39. Bandyopadhyay, K., Marrero, I. & Kumar, V. NKT cell subsets as key participants in liver physiology and pathology. Cell Mol. Immunol. 13, 337–346 (2016).

    Article  CAS  Google Scholar 

  40. Lawson, V. J., Weston, K. & Maurice, D. Early growth response 2 regulates the survival of thymocytes during positive selection. Eur. J. Immunol. 40, 232–241 (2010).

    Article  CAS  Google Scholar 

  41. Lazarevic, V. et al. The gene encoding early growth response 2, a target of the transcription factor NFAT, is required for the development and maturation of natural killer T cells. Nat. Immunol. 10, 306–313 (2009).

    Article  CAS  Google Scholar 

  42. Hu, T., Gimferrer, I., Simmons, A., Wiest, D. & Alberola-Ila, J. The Ras/MAPK pathway is required for generation of iNKT cells. PLoS One 6, e19890 (2011).

    Article  CAS  Google Scholar 

  43. Thapa, P., Romero Arocha, S., Chung, J. Y., Sant’Angelo, D. B. & Shapiro, V. S. Histone deacetylase 3 is required for iNKT cell development. Sci. Rep. 7, 5784 (2017).

    Article  Google Scholar 

  44. Matsuda, J. L. et al. Homeostasis of V alpha 14i NKT cells. Nat. Immunol. 3, 966–974 (2002).

    Article  CAS  Google Scholar 

  45. Yu, X. & Li, Z. TOX gene: a novel target for human cancer gene therapy. Am. J. Cancer Res. 5, 3516–3524 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yun, S. et al. TOX regulates the differentiation of human natural killer cells from hematopoietic stem cells in vitro. Immunol. Lett. 136, 29–36 (2011).

    Article  CAS  Google Scholar 

  47. Vong, Q. P. et al. TOX2 regulates human natural killer cell development by controlling T-BET expression. Blood 124, 3905–3913 (2014).

    Article  CAS  Google Scholar 

  48. Aliahmad, P. & Kaye, J. Development of all CD4 T lineages requires nuclear factor TOX. J. Exp. Med. 205, 245–256 (2008).

    Article  CAS  Google Scholar 

  49. Bending, D. et al. Epigenetic changes at Il12rb2 and Tbx21 in relation to plasticity behavior of Th17 cells. J. Immunol. 186, 3373–3382 (2011).

    Article  CAS  Google Scholar 

  50. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+T cells. Immunity 30, 155–167 (2009).

    Article  Google Scholar 

  51. Reeves, R. Nuclear functions of the HMG proteins. Biochim. Biophys. Acta 1799, 3–14 (2010).

    Article  CAS  Google Scholar 

  52. Ranson, T. et al. IL-15 availability conditions homeostasis of peripheral natural killer T cells. Proc. Natl. Acad. Sci. USA 100, 2663–2668 (2003).

    Article  CAS  Google Scholar 

  53. Yi, Z., Wallis, A. M. & Bishop, G. A. Roles of TRAF3 in T cells: many surprises. Cell Cycle 14, 1156–1163 (2015).

    Article  CAS  Google Scholar 

  54. Yang, W. & Ernst, P. SET/MLL family proteins in hematopoiesis and leukemia. Int J. Hematol. 105, 7–16 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Yu Zhang (Peking University Health Science Center, China) and Lilin Ye (Army Medical University, China) for kindly providing Bcl2 and Cd4Cre transgenic mice, Li Bai (University of Science and Technology of China, China) for the DN32.D3 cell line, and Zhongjun Dong (Tsinghua University, China) for the pMSCV-ubc-EGFP and pCL-Eco plasmids. The authors also thank Zhongjun Dong, Xiaoyu Hu (Tsinghua University, China), Yu Zhang, Yanhui Yin, Dan Lv, Chao Zhong, and Wenling Han (Peking University Health Science Center, China) for critical comments, helpful discussions, and critical reagents. The α-galactosylceramide and unloaded and PBS57-loaded CD1d tetramers conjugated to phycoerythrin or allophycocyanin were supplied by the National Institutes of Health tetramer facility. This work was supported by grants from the National Key Research and Development Program of China, 2017YFA0104500 (Q.G.), the National Natural Science Foundation of China, 81471525 and 31671244 (Q.G.), 31470843 (J.Z.),31370898 (Y.C.)  the Foundation for Innovative Research Groups of the National Natural Science Foundation of China, 81621001 (Q.G.), Program for New Century Excellent Talents in University, NCET-13-0018 (J.Z.) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Q.G. and K.W. designed the research, analyzed data, and wrote the manuscript. K.W. performed the research. X.Z., Y.W., S.Z., G.J., and M.L. performed the research. J.H., R.J., and X.H. contributed reagents and technical support. H.W. helped with the flow cytometry. Y.C. and J.Z. edited the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jun Zhang, Yingyu Chen or Qing Ge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Zhang, X., Wang, Y. et al. PDCD5 regulates iNKT cell terminal maturation and iNKT1 fate decision. Cell Mol Immunol 16, 746–756 (2019). https://doi.org/10.1038/s41423-018-0059-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0059-2

This article is cited by

Search

Quick links