Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

SPP1 represents a therapeutic target that promotes the progression of oesophageal squamous cell carcinoma by driving M2 macrophage infiltration

Abstract

Background

Tumour-associated macrophages (TAMs) are an important component of the tumour microenvironment (TME). However, the crosstalk between oesophageal squamous cell carcinoma (ESCC) cells and TAMs remains largely unexplored.

Methods

Clinical samples and the TCGA database were used to evaluate the relevance of SPP1 and TAM infiltration in ESCC. Mouse models were constructed to investigate the roles of macrophages educated by SPP1 in ESCC. Macrophage phenotypes were determined using qRT‒PCR and immunohistochemical staining. RNA sequencing was performed to elucidate the mechanism.

Results

Increasing expression of SPP1 correlated with M2-like TAM accumulation in ESCC, and they both predicted poor prognosis in the ESCC cohort. Knockdown of SPP1 significantly inhibited the infiltration of M2 TAMs in xenograft tumours. In vivo mouse model experiments showed that SPP1-mediated education of macrophages plays an essential role in the progression of ESCC. Mechanistically, SPP1 recruited macrophages and promoted M2 polarisation via CD44/PI3K/AKT signalling activation and then induced VEGFA and IL6 secretion to sustain ESCC progression. Finally, blockade of SPP1 with RNA aptamer significantly inhibited tumour growth and M2 TAM infiltration in xenograft mouse models.

Conclusions

This study highlights SPP1-mediated crosstalk between ESCC cells and TAMs in ESCC. SPP1 could serve as a potential target in ESCC therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SPP1 is highly expressed in EC patients and correlates with poor survival.
Fig. 2: SPP1 expression positively correlates with M2 macrophage infiltration in ESCC patients.
Fig. 3: SPP1 promotes tumour growth and the infiltration of M2 TAMs in ESCC in xenograft models.
Fig. 4: SPP1 plays a key role in ESCC cells for recruitment and polarisation of macrophages.
Fig. 5: Macrophages play a prominent role in the SPP1-mediated promotion of ESCC.
Fig. 6: SPP1 activates CD44/PI3K/AKT signalling to promote M2 polarisation of macrophages in ESCC.
Fig. 7: The SPP1 aptamer suppresses tumour growth and M2 macrophage polarisation in ESCC.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

References

  1. Li X, Chen L, Luan S, Zhou J, Xiao X, Yang Y, et al. The development and progress of nanomedicine for esophageal cancer diagnosis and treatment. Semin Cancer Biol. 2022;86:873–85.

    Article  CAS  PubMed  Google Scholar 

  2. Liu CQ, Ma YL, Qin Q, Wang PH, Luo Y, Xu PF, et al. Epidemiology of esophageal cancer in 2020 and projections to 2030 and 2040. Thorac Cancer. 2023;14:3–11.

    Article  PubMed  Google Scholar 

  3. Zhu H, Ma X, Ye T, Wang H, Wang Z, Liu Q, et al. Esophageal cancer in China: Practice and research in the new era. Int J Cancer. 2023;152:1741–51.

    Article  CAS  PubMed  Google Scholar 

  4. Smyth EC, Lagergren J, Fitzgerald RC, Lordick F, Shah MA, Lagergren P, et al. Oesophageal cancer. Nat Rev Dis Prim. 2017;3:17048.

    Article  PubMed  Google Scholar 

  5. Arnold M, Ferlay J, van Berge Henegouwen MI, Soerjomataram I. Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut. 2020;69:1564–71.

    Article  PubMed  Google Scholar 

  6. Li Q, Liu T, Ding Z. Neoadjuvant immunotherapy for resectable esophageal cancer: a review. Front Immunol. 2022;13:1051841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu C, Liu Y, Ali NM, Zhang B, Cui X. The role of innate immune cells in the tumor microenvironment and research progress in anti-tumor therapy. Front Immunol. 2022;13:1039260.

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Gong R, Zhao C, Lei K, Sun X, Ren H. Human FOXP3 and tumour microenvironment. Immunology. 2023;168:248–55.

    Article  CAS  PubMed  Google Scholar 

  9. Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J Biomed Sci. 2022;29:83.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 2022;21:799–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cheng K, Cai N, Zhu J, Yang X, Liang H, Zhang W. Tumor-associated macrophages in liver cancer: From mechanisms to therapy. Cancer Commun (Lond, Engl). 2022;42:1112–40.

    Article  Google Scholar 

  12. Wu K, Lin K, Li X, Yuan X, Xu P, Ni P, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front Immunol. 2020;11:1731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Allavena P, Digifico E, Belgiovine C. Macrophages and cancer stem cells: a malevolent alliance. Mol Med (Camb, Mass). 2021;27:121.

    Article  CAS  PubMed  Google Scholar 

  14. Kerneur C, Cano CE, Olive D. Major pathways involved in macrophage polarization in cancer. Front Immunol. 2022;13:1026954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang H, Yung MMH, Ngan HYS, Chan KKL, Chan DW. The impact of the tumor microenvironment on macrophage polarization in cancer metastatic progression. Int J Mol Sci. 2021;22:6560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nowak M, Klink M. The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer. Cells. 2020;9:1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Masetti M, Carriero R, Portale F, Marelli G, Morina N, Pandini M, et al. Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer. J Exp Med. 2022;219:e20210564.

    Article  CAS  PubMed  Google Scholar 

  18. Liu M, Liu L, Song Y, Li W, Xu L. Targeting macrophages: a novel treatment strategy in solid tumors. J Transl Med. 2022;20:586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen S, Saeed A, Liu Q, Jiang Q, Xu H, Xiao GG, et al. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 2023;8:207.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tang B, Zhu J, Wang Y, Chen W, Fang S, Mao W, et al. Targeted xCT-mediated ferroptosis and protumoral polarization of macrophages is effective against hcc and enhances the efficacy of the anti-PD-1/L1 response. Adv Sci (Weinh, Baden-Wurtt, Ger). 2023;10:e2203973.

    Google Scholar 

  21. Tan Y, Zhao L, Yang YG, Liu W. The role of osteopontin in tumor progression through tumor-associated macrophages. Front Oncol. 2022;12:953283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wai PY, Kuo PC. The role of osteopontin in tumor metastasis. J Surg Res. 2004;121:228–41.

    Article  CAS  PubMed  Google Scholar 

  23. Yokosaki Y, Tanaka K, Higashikawa F, Yamashita K, Eboshida A. Distinct structural requirements for binding of the integrins alphavbeta6, alphavbeta3, alphavbeta5, alpha5beta1 and alpha9beta1 to osteopontin. Matrix Biol: J Int Soc Matrix Biol. 2005;24:418–27.

    Article  CAS  Google Scholar 

  24. Lamort AS, Giopanou I, Psallidas I, Stathopoulos GT. Osteopontin as a link between inflammation and cancer: the thorax in the spotlight. Cells. 2019;8:815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Song Z, Chen W, Athavale D, Ge X, Desert R, Das S, et al. Osteopontin takes center stage in chronic liver disease. Hepatology. 2021;73:1594–608.

    Article  PubMed  Google Scholar 

  26. Zhu Y, Yang J, Xu D, Gao XM, Zhang Z, Hsu JL, et al. Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade. Gut. 2019;68:1653–66.

    Article  CAS  PubMed  Google Scholar 

  27. Tang H, Chen J, Han X, Feng Y, Wang F. Upregulation of SPP1 is a marker for poor lung cancer prognosis and contributes to cancer progression and cisplatin resistance. Front Cell Dev Biol. 2021;9:646390.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wei J, Marisetty A, Schrand B, Gabrusiewicz K, Hashimoto Y, Ott M, et al. Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. J Clin Invest. 2019;129:137–49.

    Article  PubMed  Google Scholar 

  29. Choe EK, Yi JW, Chai YJ, Park KJ. Upregulation of the adipokine genes ADIPOR1 and SPP1 is related to poor survival outcomes in colorectal cancer. J Surg Oncol. 2018;117:1833–40.

    Article  CAS  PubMed  Google Scholar 

  30. Deng G, Zeng F, Su J, Zhao S, Hu R, Zhu W, et al. BET inhibitor suppresses melanoma progression via the noncanonical NF-κB/SPP1 pathway. Theranostics. 2020;10:11428–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qian J, LeSavage BL, Hubka KM, Ma C, Natarajan S, Eggold JT, et al. Cancer-associated mesothelial cells promote ovarian cancer chemoresistance through paracrine osteopontin signaling. J Clin Invest. 2021;131:e146186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yi X, Luo L, Zhu Y, Deng H, Liao H, Shen Y, et al. SPP1 facilitates cell migration and invasion by targeting COL11A1 in lung adenocarcinoma. Cancer Cell Int. 2022;22:324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao H, Chen Q, Alam A, Cui J, Suen KC, Soo AP, et al. The role of osteopontin in the progression of solid organ tumour. Cell Death Dis. 2018;9:356.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu T, Wu H, Qi J, Qin C, Zhu Q. Seven immune-related genes prognostic power and correlation with tumor-infiltrating immune cells in hepatocellular carcinoma. Cancer Med. 2020;9:7440–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Clemente N, Raineri D, Cappellano G, Boggio E, Favero F, Soluri MF, et al. Osteopontin bridging innate and adaptive immunity in autoimmune diseases. J Immunol Res. 2016;2016:7675437.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Morimoto J, Kon S, Matsui Y, Uede T. Osteopontin; as a target molecule for the treatment of inflammatory diseases. Curr Drug Targets. 2010;11:494–505.

    Article  CAS  PubMed  Google Scholar 

  37. Shurin MR. Osteopontin controls immunosuppression in the tumor microenvironment. J Clin Investig. 2018;128:5209–12.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Klement JD, Paschall AV, Redd PS, Ibrahim ML, Lu C, Yang D, et al. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Investig. 2018;128:5549–60.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang C, Sun G, Wang H, Dai L, Zhang J, Du R. Serum anti-SPP1 autoantibody as a potential novel biomarker in detection of esophageal squamous cell carcinoma. BMC Cancer. 2022;22:932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Győrffy B. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. GeroScience. 2023;45:1889–98.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bartha Á, Győrffy B. TNMplot.com: a web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int J Mol Sci. 2021;22:2622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol (Clifton, NJ). 2018;1711:243–59.

    Article  CAS  Google Scholar 

  43. Du R, Wang C, Liu J, Wang K, Dai L, Shen W. Phosphorylation of TGIF2 represents a therapeutic target that drives EMT and metastasis of lung adenocarcinoma. BMC Cancer. 2023;23:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mi Z, Guo H, Russell MB, Liu Y, Sullenger BA, Kuo PC. RNA aptamer blockade of osteopontin inhibits growth and metastasis of MDA-MB231 breast cancer cells. Mol Ther. 2009;17:153–61.

    Article  CAS  PubMed  Google Scholar 

  45. Urakami S, Koma YI, Tsukamoto S, Azumi Y, Miyako S, Kitamura Y, et al. Biological and clinical significance of the YKL-40/osteopontin-integrin β4-p70S6K axis induced by macrophages in early oesophageal squamous cell carcinoma. J Pathol. 2023;261:55–70.

    Article  CAS  PubMed  Google Scholar 

  46. Chen Z, Huang Y, Hu Z, Zhao M, Bian Y, Chen Z, et al. Dissecting the single-cell transcriptome network in patients with esophageal squamous cell carcinoma receiving operative paclitaxel plus platinum chemotherapy. Oncogenesis. 2021;10:71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li H, Miao Y, Zhong L, Feng S, Xu Y, Tang L, et al. Identification of TREM2-positive tumor-associated macrophages in esophageal squamous cell carcinoma: implication for poor prognosis and immunotherapy modulation. Front Immunol. 2023;14:1162032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dinh HQ, Pan F, Wang G, Huang QF, Olingy CE, Wu ZY, et al. Integrated single-cell transcriptome analysis reveals heterogeneity of esophageal squamous cell carcinoma microenvironment. Nat Commun. 2021;12:7335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229:176–85.

    Article  CAS  PubMed  Google Scholar 

  50. Du Y, Rong L, Cong Y, Shen L, Zhang N, Wang B. Macrophage polarization: an effective approach to targeted therapy of inflammatory bowel disease. Expert Opin Therap Targets. 2021;25:191–209.

    Article  CAS  Google Scholar 

  51. Wang Y, Wang K, Bao Y, Zhang T, Ainiwaer D, Xiong X, et al. The serum soluble Klotho alleviates cardiac aging and regulates M2a/M2c macrophage polarization via inhibiting TLR4/Myd88/NF-κB pathway. Tissue Cell. 2022;76:101812.

    Article  CAS  PubMed  Google Scholar 

  52. Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170:605–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090.

    Article  PubMed  Google Scholar 

  54. Lendeckel U, Venz S, Wolke C. Macrophages: shapes and functions. Chemtexts. 2022;8:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xie W, Cheng J, Hong Z, Cai W, Zhuo H, Hou J, et al. Multi-transcriptomic analysis reveals the heterogeneity and tumor-promoting role of SPP1/CD44-mediated intratumoral crosstalk in gastric cancer. Cancers. 2022;15:164.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhu B, Suzuki K, Goldberg HA, Rittling SR, Denhardt DT, McCulloch CA, et al. Osteopontin modulates CD44-dependent chemotaxis of peritoneal macrophages through G-protein-coupled receptors: evidence of a role for an intracellular form of osteopontin. J Cell Physiol. 2004;198:155–67.

    Article  CAS  PubMed  Google Scholar 

  57. Deng L, Jian Z, Xu T, Li F, Deng H, Zhou Y, et al. Macrophage polarization: an important candidate regulator for lung diseases. Molecules (Basel, Switz). 2023;28:2379.

    Article  CAS  Google Scholar 

  58. Kim EK, Jeon I, Seo H, Park YJ, Song B, Lee KA, et al. Tumor-derived osteopontin suppresses antitumor immunity by promoting extramedullary myelopoiesis. Cancer Res. 2014;74:6705–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Jianying Zhang for suggestions on the study design and revision of the paper.

Funding

This work was supported by the National Natural Science Foundation of China (No. 82203287 to Renle Du), the China Postdoctoral Science Foundation (No. 2022M722874 to Renle Du), the Key Scientific and Technological Project of Henan Province (No. 242102311154 to Renle Du), and the Project of Basic Research Fund of Henan Institute of Medical and Pharmacological Sciences (No. 2023BP0204 to Renle Du).

Author information

Authors and Affiliations

Authors

Contributions

CW performed the experiments and drafted the manuscript. YTL, LHW and XHG provided the materials for experiments and data analysis. YH, TDL, ML and LPD revised the manuscript. RLD designed and edited the manuscript. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Renle Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participants

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committee of Zhengzhou University. The animal experiments of this study were approved by the Institutional Animal Care and Use Committee of the Zhengzhou University (Ethic approved number: 2019003). The maximal tumour size/burden permitted by the ethics committee is 2 cm3; we confirmed that during this study the maximal tumour size/burden was not exceeded. The animal experiments were conducted in accordance with the ARRIVE guidelines.

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, Y., Wang, L. et al. SPP1 represents a therapeutic target that promotes the progression of oesophageal squamous cell carcinoma by driving M2 macrophage infiltration. Br J Cancer (2024). https://doi.org/10.1038/s41416-024-02683-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-024-02683-x

Search

Quick links