Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular and Molecular Biology

Ferroptosis in hepatocellular carcinoma: mechanisms and targeted therapy

Abstract

Hepatocellular carcinoma is the most prevalent form of primary liver cancer with a multifactorial aetiology comprising genetic, environmental, and behavioural factors. Evading cell death is a defining hallmark of hepatocellular carcinoma, underpinning tumour growth, progression, and therapy resistance. Ferroptosis is a form of nonapoptotic cell death driven by an array of cellular events, including intracellular iron overload, free radical production, lipid peroxidation and activation of various cell death effectors, ultimately leading to rupture of the plasma membrane. Although induction of ferroptosis is an emerging strategy to suppress hepatocellular carcinoma, malignant cells manage to develop adaptive mechanisms, conferring resistance to ferroptosis and ferroptosis-inducing drugs. Herein, we aim at elucidating molecular mechanisms and signalling pathways involved in ferroptosis and offer our opinions on druggable targets and new therapeutic strategy in an attempt to restrain the growth and progression of hepatocellular carcinoma through induction of ferroptotic cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Iron metabolism, overload and ferroptosis.
Fig. 2: Ferroptosis mechanisms and regulations.
Fig. 3: Signalling pathways and regulation of ferroptosis.
Fig. 4: Autophagy and ferroptosis.
Fig. 5: NRF2-keap1 pathway dictates degradation or nuclear translocation of NRF2.
Fig. 6: Potential compounds targeting NRF2 at different stages of HCC progression.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Röcken C, Carl-McGrath S. Pathology and pathogenesis of hepatocellular carcinoma. Digestive Dis. 2001;19:269–78.

    Article  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2021;71:209–49.

    Google Scholar 

  3. Ahmed O, Liu L, Gayed A, Baadh A, Patel M, Tasse J, et al. The changing face of hepatocellular carcinoma: forecasting prevalence of nonalcoholic steatohepatitis and hepatitis C cirrhosis. J Clin Exp Hepatol. 2019;9:50–55.

    Article  Google Scholar 

  4. Kanwal F, Hoang T, Kramer JR, Asch SM, Goetz MB, Zeringue A, et al. Increasing prevalence of HCC and cirrhosis in patients with chronic hepatitis C virus infection. Gastroenterology. 2011;140:1182–8. e1181.

    Article  Google Scholar 

  5. Siegel AB, Zhu AX. Metabolic syndrome and hepatocellular carcinoma: two growing epidemics with a potential link. Cancer: Interdiscip Int J Am Cancer Soc. 2009;115:5651–61.

    Article  Google Scholar 

  6. Gan L, Liu Z, Sun C. Obesity linking to hepatocellular carcinoma: a global view. Biochimica et Biophysica Acta (BBA)-Rev Cancer. 2018;1869:97–102.

    Article  CAS  Google Scholar 

  7. Cholankeril G, Patel R, Khurana S, Satapathy SK. Hepatocellular carcinoma in non-alcoholic steatohepatitis: current knowledge and implications for management. World J Hepatol. 2017;9:533.

    Article  Google Scholar 

  8. Zaki MYW, Mahdi AK, Patman GL, Whitehead A, Maurício JP, McCain MV, et al. Key features of the environment promoting liver cancer in the absence of cirrhosis. Sci Rep. 2021;11:1–17.

    Article  Google Scholar 

  9. Sun Y, Peng Z. Programmed cell death and cancer. Postgrad Med J. 2009;85:134–40.

    Article  CAS  Google Scholar 

  10. Aizawa S, Brar G, Tsukamoto H. Cell death and liver disease. Gut liver. 2020;14:20.

    Article  CAS  Google Scholar 

  11. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541.

    Article  Google Scholar 

  12. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019;29:347–64.

    Article  CAS  Google Scholar 

  13. Dionísio P, Amaral J, Rodrigues C. Oxidative stress and regulated cell death in Parkinson’s disease. Ageing Res Rev. 2021;67:101263.

  14. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85.

    Article  CAS  Google Scholar 

  15. Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy. 2020; https://doi.org/10.1080/15548627.2020.1810918.

  16. Chang W-T, Bow Y-D, Fu P-J, Li C-Y, Wu C-Y, Chang Y-H, et al. A marine terpenoid, heteronemin, induces both the apoptosis and ferroptosis of hepatocellular carcinoma cells and involves the ROS and MAPK pathways. Oxid Med Cell Longev. 2021;2021:7689045.

    Google Scholar 

  17. Nie J, Lin B, Zhou M, Wu L, Zheng T. Role of ferroptosis in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2018;144:2329–37.

    Article  CAS  Google Scholar 

  18. Lakhal-Littleton S. Mechanisms of cardiac iron homeostasis and their importance to heart function. Free Radic Biol Med. 2019;133:234–7.

    Article  CAS  Google Scholar 

  19. Bi Y, Ajoolabady A, Demillard LJ, Yu W, Hilaire ML, Zhang Y, et al. Dysregulation of iron metabolism in cardiovascular diseases: from iron deficiency to iron overload. Biochem Pharmacol. 2021;190:114661.

  20. Aisen P, Wessling-Resnick M, Leibold EA. Iron metabolism. Curr Opin Chem Biol. 1999;3:200–6.

    Article  CAS  Google Scholar 

  21. Wang C-Y, Babitt JL. Liver iron sensing and body iron homeostasis. Blood, J Am Soc Hematol. 2019;133:18–29.

    CAS  Google Scholar 

  22. Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochemical J. 2011;434:365–81.

    Article  CAS  Google Scholar 

  23. Ponka P, Beaumont C, Richardson DR. Function and regulation of transferrin and ferritin. Semin Hematol. 1998;35:35–54.

  24. Newman R, Schneider C, Sutherland R, Vodinelich L, Greaves M. The transferrin receptor. Trends Biochemical Sci. 1982;7:397–400.

    Article  CAS  Google Scholar 

  25. Montalbetti N, Simonin A, Kovacs G, Hediger MA. Mammalian iron transporters: families SLC11 and SLC40. Mol Asp Med. 2013;34:270–87.

    Article  CAS  Google Scholar 

  26. Munro HN, Linder MC. Ferritin: structure, biosynthesis, and role in iron metabolism. Physiological Rev. 1978;58:317–96.

    Article  CAS  Google Scholar 

  27. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ 3rd, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12:1425–8.

    Article  CAS  Google Scholar 

  28. Mayr R, Griffiths WJ, Hermann M, McFarlane I, Halsall DJ, Finkenstedt A, et al. Identification of mutations in SLC40A1 that affect ferroportin function and phenotype of human ferroportin iron overload. Gastroenterology. 2011;140:2056–63. e2051.

    Article  CAS  Google Scholar 

  29. Li J, Liu J, Xu Y, Wu R, Chen X, Song X, et al. Tumor heterogeneity in autophagy-dependent ferroptosis. Autophagy. 2021; https://doi.org/10.1080/15548627.2021.1872241.

  30. Breuer W, Hershko C, Cabantchik Z. The importance of non-transferrin bound iron in disorders of iron metabolism. Transfus Sci. 2000;23:185–92.

    Article  CAS  Google Scholar 

  31. Lane D, Merlot A, Huang M-H, Bae D-H, Jansson P, Sahni S, et al. Cellular iron uptake, trafficking and metabolism: key molecules and mechanisms and their roles in disease. Biochimica et Biophysica Acta (BBA)-Mol Cell Res. 2015;1853:1130–44.

    Article  CAS  Google Scholar 

  32. Knutson MD. Non-transferrin-bound iron transporters. Free Radic Biol Med. 2019;133:101–11.

    Article  CAS  Google Scholar 

  33. Song X, Zhu S, Chen P, Hou W, Wen Q, Liu J, et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc–activity. Curr Biol. 2018;28:2388–99. e2385.

    Article  CAS  Google Scholar 

  34. Yu Y, Jiang L, Wang H, Shen Z, Cheng Q, Zhang P, et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood. 2020;136:726–39.

    Article  CAS  Google Scholar 

  35. Chen X, Yu C, Kang R, Tang D. Iron metabolism in ferroptosis. Front Cell Dev Biol. 2020;8:590226.

  36. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  Google Scholar 

  37. Paterek A, Mackiewicz U, Mączewski M. Iron and the heart: a paradigm shift from systemic to cardiomyocyte abnormalities. J Cell Physiol. 2019;234:21613–29.

    Article  CAS  Google Scholar 

  38. Vela D. Keeping heart homeostasis in check through the balance of iron metabolism. Acta Physiologica. 2020;228:e13324.

    Article  CAS  Google Scholar 

  39. Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends biochemical Sci. 2016;41:274–86.

    Article  CAS  Google Scholar 

  40. Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X, et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med. 2019;131:356–69.

    Article  CAS  Google Scholar 

  41. Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X. Ferroptosis is an autophagic cell death process. Cell Res. 2016;26:1021–32.

    Article  CAS  Google Scholar 

  42. Chen X, Yu C, Kang R, Tang D. Iron metabolism in ferroptosis. Front Cell Dev Biol. 2020;8:590226.

    Article  Google Scholar 

  43. Higdon A, Diers AR, Oh JY, Landar A, Darley-Usmar VM. Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochemical J. 2012;442:453–64.

    Article  CAS  Google Scholar 

  44. Latunde-Dada GO. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochimica et Biophysica Acta (BBA)-Gen Subj. 2017;1861:1893–1900.

    Article  CAS  Google Scholar 

  45. Guo J, Xu B, Han Q, Zhou H, Xia Y, Gong C, et al. Ferroptosis: a novel anti-tumor action for cisplatin. Cancer Res Treat. 2018;50:445.

    Article  CAS  Google Scholar 

  46. Sheng X, Shan C, Liu J, Yang J, Sun B, Chen D. Theoretical insights into the mechanism of ferroptosis suppression via inactivation of a lipid peroxide radical by liproxstatin-1. Phys Chem Chem Phys. 2017;19:13153–9.

    Article  CAS  Google Scholar 

  47. Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M, Conrad M, et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent Sci. 2017;3:232–43.

    Article  CAS  Google Scholar 

  48. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13:91–98.

    Article  CAS  Google Scholar 

  49. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 2016;113:E4966–75.

    Article  CAS  Google Scholar 

  50. Yuan H, Li X, Zhang X, Kang R, Tang D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochemical biophysical Res Commun. 2016;478:1338–43.

    Article  CAS  Google Scholar 

  51. Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol. 2015;10:1604–9.

    Article  CAS  Google Scholar 

  52. Soupene E, Kuypers FA. Mammalian long-chain acyl-CoA synthetases. Exp Biol Med. 2008;233:507–21.

    Article  CAS  Google Scholar 

  53. Shindou H, Shimizu T. Acyl-CoA: lysophospholipid acyltransferases. J Biol Chem. 2009;284:1–5.

    Article  CAS  Google Scholar 

  54. Yang W-H, Huang Z, Wu J, Ding C-KC, Murphy SK, Chi J-T. A TAZ–ANGPTL4–NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancerTAZ promotes ferroptosis in OvCa. Mol Cancer Res. 2020;18:79–90.

    Article  CAS  Google Scholar 

  55. Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, Croix CS, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13:81–90.

    Article  CAS  Google Scholar 

  56. Kreft H, Jetz W. Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA. 2007;104:5925–30.

    Article  CAS  Google Scholar 

  57. Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W, et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol. 2020;16:302–9.

    Article  CAS  Google Scholar 

  58. Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB, et al. Role of mitochondria in ferroptosis. Mol Cell. 2019;73:354–63. e353.

    Article  CAS  Google Scholar 

  59. Hinman A, Holst CR, Latham JC, Bruegger JJ, Ulas G, McCusker KP, et al. Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase. PLoS ONE. 2018;13:e0201369.

    Article  Google Scholar 

  60. Kuang F, Liu J, Tang D, Kang R. Oxidative damage and antioxidant defense in ferroptosis. Front Cell Dev Biol. 2020;8:969.

    Article  Google Scholar 

  61. Bai Y, Meng L, Han L, Jia Y, Zhao Y, Gao H, et al. Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun. 2019;508:997–1003.

    Article  CAS  Google Scholar 

  62. Xu X, Zhang X, Wei C, Zheng D, Lu X, Yang Y, et al. Targeting SLC7A11 specifically suppresses the progression of colorectal cancer stem cells via inducing ferroptosis. Eur J Pharm Sci. 2020;152:105450.

    Article  CAS  Google Scholar 

  63. Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18:280–96.

    Article  CAS  Google Scholar 

  64. Zheng J, Sato M, Mishima E, Sato H, Proneth B, Conrad M. Sorafenib fails to trigger ferroptosis across a wide range of cancer cell lines. Cell death Dis. 2021;12:1–10.

    Article  Google Scholar 

  65. Sato H, Tamba M, Ishii T, Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 1999;274:11455–8.

    Article  CAS  Google Scholar 

  66. Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 2015;27:211–22.

    Article  CAS  Google Scholar 

  67. Banjac A, Perisic T, Sato H, Seiler A, Bannai S, Weiss N, et al. The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death. Oncogene. 2008;27:1618–28.

    Article  CAS  Google Scholar 

  68. Jiang L, Kon N, Li T, Wang S-J, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62.

    Article  CAS  Google Scholar 

  69. Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci. 2016;73:2195–209.

    Article  CAS  Google Scholar 

  70. Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent-and AIF-mediated cell death. Cell Metab. 2008;8:237–48.

    Article  CAS  Google Scholar 

  71. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31.

    Article  CAS  Google Scholar 

  72. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16:1180–91.

    Article  CAS  Google Scholar 

  73. Guerriero E, Capone F, Accardo M, Sorice A, Costantini M, Colonna G, et al. GPX4 and GPX7 over-expression in human hepatocellular carcinoma tissues. Eur J Histochemistry. 2015;59:2540.

    Article  CAS  Google Scholar 

  74. Gan B. Mitochondrial regulation of ferroptosis. J Cell Biol. 2021;220:e202105043.

    Article  CAS  Google Scholar 

  75. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575:688–92.

    Article  CAS  Google Scholar 

  76. Dai E, Zhang W, Cong D, Kang R, Wang J, Tang D. AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochemical Biophysical Res Commun. 2020;523:966–71.

    Article  CAS  Google Scholar 

  77. Martinez VD, Vucic EA, Pikor LA, Thu KL, Hubaux R, Lam WL. Frequent concerted genetic mechanisms disrupt multiple components of the NRF2 inhibitor KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex in thyroid cancer. Mol Cancer. 2013;12:1–6.

    Article  Google Scholar 

  78. Rada P, Rojo AI, Evrard-Todeschi N, Innamorato NG, Cotte A, Jaworski T, et al. Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/β-TrCP axis. Mol Cell Biol. 2012;32:3486–99.

    Article  CAS  Google Scholar 

  79. Zhang J, Zhang J, Ni H, Wang Y, Katwal G, Zhao Y, et al. Downregulation of XBP1 protects kidney against ischemia-reperfusion injury via suppressing HRD1-mediated NRF2 ubiquitylation. Cell Death Discov. 2021;7:1–13.

    Google Scholar 

  80. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284:13291–5.

    Article  CAS  Google Scholar 

  81. Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23:101107.

    Article  CAS  Google Scholar 

  82. Kerins MJ, Ooi A. The roles of NRF2 in modulating cellular iron homeostasis. Antioxid Redox Signal. 2018;29:1756–73.

    Article  CAS  Google Scholar 

  83. Agyeman AS, Chaerkady R, Shaw PG, Davidson NE, Visvanathan K, Pandey A, et al. Transcriptomic and proteomic profiling of KEAP1 disrupted and sulforaphane-treated human breast epithelial cells reveals common expression profiles. Breast cancer Res Treat. 2012;132:175–87.

    Article  CAS  Google Scholar 

  84. Harada N, Kanayama M, Maruyama A, Yoshida A, Tazumi K, Hosoya T, et al. Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages. Arch Biochem biophysics. 2011;508:101–9.

    Article  CAS  Google Scholar 

  85. Chorley BN, Campbell MR, Wang X, Karaca M, Sambandan D, Bangura F, et al. Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha. Nucleic Acids Res. 2012;40:7416–29.

    Article  CAS  Google Scholar 

  86. Hübner R-H, Schwartz JD, De BP, Ferris B, Omberg L, Mezey JG, et al. Coordinate control of expression of Nrf2-modulated genes in the human small airway epithelium is highly responsive to cigarette smoking. Mol Med. 2009;15:203–19.

    Article  Google Scholar 

  87. Campbell MR, Karaca M, Adamski KN, Chorley BN, Wang X, Bell DA. Novel hematopoietic target genes in the NRF2-mediated transcriptional pathway. Oxid Med Cell Longev. 2013;2013:120305.

    Article  Google Scholar 

  88. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. Activation of the p62‐Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016;63:173–84.

    Article  CAS  Google Scholar 

  89. Sun X, Niu X, Chen R, He W, Chen D, Kang R, et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology. 2016;64:488–500.

    Article  CAS  Google Scholar 

  90. Wang H, Lin D, Yu Q, Li Z, Lenahan C, Dong Y, et al. A promising future of ferroptosis in tumor therapy. Front Cell Dev Biol. 2021;9:1255.

  91. Guo W, Zhou BP. Oncometabolite modification of Keap1 links GSTZ1 deficiency with cancer. Genes Dis. 2019;6:333–4.

    Article  CAS  Google Scholar 

  92. Wang Q, Bin C, Xue Q, Gao Q, Huang A, Wang K, et al. GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis. Cell Death Dis. 2021;12:1–16.

    Google Scholar 

  93. Jedlitschky G, Burchell B, Keppler D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem. 2000;275:30069–74.

    Article  CAS  Google Scholar 

  94. Weaver DA, Crawford EL, Warner KA, Elkhairi F, Khuder SA, Willey JC. ABCC5, ERCC2, XPA and XRCC1 transcript abundance levels correlate with cisplatin chemoresistance in non-small cell lung cancer cell lines. Mol Cancer. 2005;4:1–8.

    Article  Google Scholar 

  95. Huang W, Chen K, Lu Y, Zhang D, Cheng Y, Li L, et al. ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma. Neoplasia. 2021;23:1227–39.

    Article  CAS  Google Scholar 

  96. Sun J, Zhou C, Zhao Y, Zhang X, Chen W, Zhou Q, et al. Quiescin sulfhydryl oxidase 1 promotes sorafenib-induced ferroptosis in hepatocellular carcinoma by driving EGFR endosomal trafficking and inhibiting NRF2 activation. Redox Biol. 2021;41:101942.

    Article  CAS  Google Scholar 

  97. Lake DF, Faigel DO. The emerging role of QSOX1 in cancer. Antioxid Redox Signal. 2014;21:485–96.

    Article  CAS  Google Scholar 

  98. Xu MJ, Feng M. Radiation therapy in HCC: What Data Exist and What Data Do We Need to Incorporate into Guidelines? Semin Liver Dis. 2019;39:43–52.

    Article  Google Scholar 

  99. Yuan Y, Cao W, Zhou H, Qian H, Wang H. CLTRN, regulated by NRF1/RAN/DLD protein complex, enhances radiation sensitivity of hepatocellular carcinoma cells through ferroptosis pathway. Int J Radiat Oncol* Biol* Phys. 2021;110:859–71.

    Article  Google Scholar 

  100. Fukui K, Yang Q, Cao Y, Takahashi N, Hatakeyama H, Wang H, et al. The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation. Cell Metab. 2005;2:373–84.

    Article  CAS  Google Scholar 

  101. Gao R, Kalathur RK, Coto-Llerena M, Ercan C, Buechel D, Shuang S, et al. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med. 2021;13:e14351.

  102. Fan Z, Yang G, Zhang W, Liu Q, Liu G, Liu P, et al. Hypoxia blocks ferroptosis of hepatocellular carcinoma via suppression of METTL14 triggered YTHDF2‐dependent silencing of SLC7A11. J Cell Mol Med. 2021;25:10197–212.

    Article  CAS  Google Scholar 

  103. He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18:1–15.

    Article  CAS  Google Scholar 

  104. Feng X, Wang S, Sun Z, Dong H, Yu H, Huang M, et al. Ferroptosis enhanced diabetic renal tubular injury via HIF-1α/HO-1 pathway in Db/Db mice. Front Endocrinol. 2021;12:21.

    Article  Google Scholar 

  105. Miess H, Dankworth B, Gouw AM, Rosenfeldt M, Schmitz W, Jiang M, et al. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene. 2018;37:5435–50.

    Article  CAS  Google Scholar 

  106. Chen S, Zhao Y. Circular RNAs: characteristics, function, and role in human cancer. Histol Histopathol. 2018;33:887–93.

    CAS  Google Scholar 

  107. Gaffo E, Boldrin E, Dal Molin A, Bresolin S, Bonizzato A, Trentin L, et al. Circular RNA differential expression in blood cell populations and exploration of circRNA deregulation in pediatric acute lymphoblastic leukemia. Sci Rep. 2019;9:1–12.

    Article  CAS  Google Scholar 

  108. Xu Q, Zhou L, Yang G, Meng F, Wan Y, Wang L, et al. CircIL4R facilitates the tumorigenesis and inhibits ferroptosis in hepatocellular carcinoma by regulating the miR‐541‐3p/GPX4 axis. Cell Biol Int. 2020;44:2344–56.

    Article  CAS  Google Scholar 

  109. Lyu N, Zeng Y, Kong Y, Chen Q, Deng H, Ou S, et al. Ferroptosis is involved in the progression of hepatocellular carcinoma through the circ0097009/miR-1261/SLC7A11 axis. Ann Transl Med 2021;9:675.

    Article  Google Scholar 

  110. Fang S, Chen W, Ding J, Zhang D, Zheng L, Song J, et al. Oxidative medicine and cellular longevity Hsa_circ_0013731 mediated by E2F1 inhibits ferroptosis in hepatocellular carcinoma cells by sponging miR-877-3p and targeting SLC7A11. Researchsquare, 2021.

  111. Qi W, Li Z, Xia L, Dai J, Zhang Q, Wu C, et al. LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells. Sci Rep. 2019;9:1–12.

    Article  Google Scholar 

  112. Wong SL, Sukkar MB. The SPARC protein: an overview of its role in lung cancer and pulmonary fibrosis and its potential role in chronic airways disease. Br J Pharmacol. 2017;174:3–14.

    Article  CAS  Google Scholar 

  113. Hua H-W, Jiang H-S, Jia L, Jia Y-P, Yao Y-L, Chen Y-W, et al. SPARC regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma. Cancer Biomark. 2021;32:425–33.

  114. Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J lipid Res. 2001;42:1007–17.

    Article  CAS  Google Scholar 

  115. Ren J, Bi Y, Sowers JR, Hetz C, Zhang Y. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol. 2021;18:499–521.

    Article  Google Scholar 

  116. Zheng X, Liu B, Liu X, Li P, Zhang P, Ye F, et al. PERK regulates the sensitivity of hepatocellular carcinoma cells to high-LET carbon ions via either apoptosis or ferroptosis. J Cancer. 2022;13:669.

    Article  CAS  Google Scholar 

  117. Ryskamp DA, Korban S, Zhemkov V, Kraskovskaya N, Bezprozvanny I. Neuronal sigma-1 receptors: signaling functions and protective roles in neurodegenerative diseases. Front Neurosci. 2019;13:862.

    Article  Google Scholar 

  118. Weng T-Y, Hung DT, Su T-P, Tsai S-YA. Loss of sigma-1 receptor chaperone promotes astrocytosis and enhances the Nrf2 antioxidant defense. Oxid Med Cell Longev 2017;2017:4582135.

    Article  Google Scholar 

  119. Bai T, Lei P, Zhou H, Liang R, Zhu R, Wang W, et al. Sigma-1 receptor protects against ferroptosis in hepatocellular carcinoma cells. J Cell Mol Med. 2019;23:7349–59.

    Article  CAS  Google Scholar 

  120. Roeser H, Lee G, Nacht S, Cartwright G. The role of ceruloplasmin in iron metabolism. J Clin Investig. 1970;49:2408–17.

    Article  CAS  Google Scholar 

  121. Shang Y, Luo M, Yao F, Wang S, Yuan Z, Yang Y. Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells. Cell Signal. 2020;72:109633.

    Article  CAS  Google Scholar 

  122. Choudhury AD, Beltran H. Retinoblastoma loss in cancer: casting a wider net. Clin Cancer Res. 2019;25:4199–201.

    Article  CAS  Google Scholar 

  123. Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z, et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett. 2015;356:971–7.

    Article  CAS  Google Scholar 

  124. Kornberg A, Horecker B, Smyrniotis P. [42] Glucose-6-phosphate dehydrogenase 6-phosphogluconic dehydrogenase. Methods in Enzymology Vol. 1, 323–327 (Academic Press, 1955).

  125. Cao F, Luo A, Yang C. G6PD inhibits ferroptosis in hepatocellular carcinoma by targeting cytochrome P450 oxidoreductase. Cell Signal. 2021;87:110098.

    Article  CAS  Google Scholar 

  126. Shen Z-Q, Huang Y-L, Teng Y-C, Wang T-W, Kao C-H, Yeh C-H, et al. CISD2 maintains cellular homeostasis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Res. 2021;1868:118954.

  127. Li B, Wei S, Yang L, Peng X, Ma Y, Wu B, et al. CISD2 promotes resistance to sorafenib-induced ferroptosis by regulating autophagy in hepatocellular carcinoma. Front Oncol 2021;11:657723.

    Article  Google Scholar 

  128. Yuan H, Li X, Zhang X, Kang R, Tang D. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun. 2016;478:838–44.

    Article  CAS  Google Scholar 

  129. Liu J, Song X, Kuang F, Zhang Q, Xie Y, Kang R, et al. NUPR1 is a critical repressor of ferroptosis. Nat Commun. 2021;12:647.

    Article  CAS  Google Scholar 

  130. Huang C, Santofimia-Castano P, Liu X, Xia Y, Peng L, Gotorbe C, et al. NUPR1 inhibitor ZZW-115 induces ferroptosis in a mitochondria-dependent manner. Cell Death Discov. 2021;7:269.

    Article  CAS  Google Scholar 

  131. Lu Y, Chan Y-T, Tan H-Y, Zhang C, Guo W, Xu Y, et al. Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2022;41:1–17.

    Article  Google Scholar 

  132. Ajoolabady A, Wang S, Kroemer G, Klionsky DJ, Uversky VN, Sowers JR, et al. ER stress in cardiometabolic diseases: from molecular mechanisms to therapeutics. Endocr Rev. 2021;42:839–71.

    Article  Google Scholar 

  133. Liu Z, Ma C, Wang Q, Yang H, Lu Z, Bi T, et al. Targeting FAM134B-mediated reticulophagy activates sorafenib-induced ferroptosis in hepatocellular carcinoma. Biochemical biophysical Res Commun. 2022;589:247–53.

    Article  CAS  Google Scholar 

  134. Yang M, Wu X, Hu J, Wang Y, Wang Y, Zhang L, et al. COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma. J Hepatol. 2022;76:1138–50.

    Article  CAS  Google Scholar 

  135. Chen Y, Li L, Lan J, Cui Y, Rao X, Zhao J, et al. CRISPR screens uncover protective effect of PSTK as a regulator of chemotherapy-induced ferroptosis in hepatocellular carcinoma. Mol Cancer. 2022;21:1–17.

    Article  Google Scholar 

  136. Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience. 2015;2:517.

    Article  Google Scholar 

  137. Li Z-J, Dai H-Q, Huang X-W, Feng J, Deng J-H, Wang Z-X, et al. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacologica Sin. 2021;42:301–10.

    Article  CAS  Google Scholar 

  138. Kotawong K, Chaijaroenkul W, Muhamad P, Na-Bangchang K. Cytotoxic activities and effects of atractylodin and β-eudesmol on the cell cycle arrest and apoptosis on cholangiocarcinoma cell line. J Pharmacol Sci. 2018;136:51–56.

    Article  CAS  Google Scholar 

  139. He Y, Fang D, Liang T, Pang H, Nong Y, Tang L, et al. Atractylodin may induce ferroptosis of human hepatocellular carcinoma cells. Ann Transl Med 2021;9:1535.

    Article  CAS  Google Scholar 

  140. Yin L, Shi C, Zhang Z, Wang W, Li M. Formosanin C attenuates lipopolysaccharide-induced inflammation through nuclear factor-κB inhibition in macrophages. Korean J Physiol Pharmacol. 2021;25:395–401.

    Article  CAS  Google Scholar 

  141. Su C-L, Lin P-L. Natural saponin formosanin c‐induced ferroptosis in human hepatocellular carcinoma cells involved ferritinophagy. FASEB J. 2020;34:1–1.

    CAS  Google Scholar 

  142. Lin P-L, Tang H-H, Wu S-Y, Shaw N-S, Su C-L. Saponin formosanin C-induced ferritinophagy and ferroptosis in human hepatocellular carcinoma cells. Antioxidants. 2020;9:682.

    Article  CAS  Google Scholar 

  143. Irving CB, Adams CE, Lawrie S. Haloperidol versus placebo for schizophrenia. The Cochrane database of systematic reviews. 2013;Cd003082. https://doi.org/10.1002/14651858.CD003082.pub3.

  144. Bai T, Wang S, Zhao Y, Zhu R, Wang W, Sun Y. Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells. Biochemical Biophysical Res Commun. 2017;491:919–25.

    Article  CAS  Google Scholar 

  145. Schumacher M, Cerella C, Eifes S, Chateauvieux S, Morceau F, Jaspars M, et al. Heteronemin, a spongean sesterterpene, inhibits TNFα-induced NF-κB activation through proteasome inhibition and induces apoptotic cell death. Biochemical Pharmacol. 2010;79:610–22.

    Article  CAS  Google Scholar 

  146. Ren X, Li Y, Zhou Y, Hu W, Yang C, Jing Q, et al. Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis. Redox Biol. 2021;46:102122.

    Article  CAS  Google Scholar 

  147. Markossian S, Ang KK, Wilson CG, Arkin MR. Small-molecule screening for genetic diseases. Annu Rev Genomics Hum Genet. 2018;19:263–88.

    Article  CAS  Google Scholar 

  148. Bollong MJ, Yun H, Sherwood L, Woods AK, Lairson LL, Schultz PG. A small molecule inhibits deregulated NRF2 transcriptional activity in cancer. ACS Chem Biol. 2015;10:2193–8.

    Article  CAS  Google Scholar 

  149. Singh A, Venkannagari S, Oh KH, Zhang Y-Q, Rohde JM, Liu L, et al. Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem Biol. 2016;11:3214–25.

    Article  CAS  Google Scholar 

  150. Matthews JH, Liang X, Paul VJ, Luesch H. A complementary chemical and genomic screening approach for druggable targets in the Nrf2 pathway and small molecule inhibitors to overcome cancer cell drug resistance. ACS Chem Biol. 2018;13:1189–99.

    Article  CAS  Google Scholar 

  151. Gao L, Xue J, Liu X, Cao L, Wang R, Lei L. A scoring model based on ferroptosis genes for prognosis and immunotherapy response prediction and tumor microenvironment evaluation in liver hepatocellular carcinoma. Aging. 2021;13:24866.

    Article  CAS  Google Scholar 

  152. Deng T, Hu B, Jin C, Tong Y, Zhao J, Shi Z, et al. A novel ferroptosis phenotype-related clinical-molecular prognostic signature for hepatocellular carcinoma. J Cell Mol Med. 2021;25:6618–33.

    Article  CAS  Google Scholar 

  153. Chen Z-A, Tian H, Yao D-M, Zhang Y, Feng Z-J, Yang C-J. Identification of a ferroptosis-related signature model including mRNAs and lncRNAs for predicting prognosis and immune activity in hepatocellular carcinoma. Front Oncol 2021;11:738477.

    Article  Google Scholar 

  154. Chen X, Kang R, Kroemer G, Tang D. Ferroptosis in infection, inflammation, and immunity. J Exp Med. 2021;218:e20210518.

  155. Chen X, Comish P, Tang D, Kang R. Characteristics and biomarkers of ferroptosis. Front. Cell Dev. Biol. 2021; https://doi.org/10.3389/fcell.2021.637162.

  156. Rodriguez R, Schreiber SL, Conrad M. Persister cancer cells: iron addiction and vulnerability to ferroptosis. Mol Cell. 2021; https://doi.org/10.1016/j.molcel.2021.12.001.

  157. Yuk H, Abdullah M, Kim D-H, Lee H, Lee S-J. Necrostatin-1 prevents ferroptosis in a RIPK1-and IDO-independent manner in hepatocellular carcinoma. Antioxidants. 2021;10:1347.

    Article  CAS  Google Scholar 

  158. Jin M, Shi C, Li T, Wu Y, Hu C, Huang G. Solasonine promotes ferroptosis of hepatoma carcinoma cells via glutathione peroxidase 4-induced destruction of the glutathione redox system. Biomedicine Pharmacother. 2020;129:110282.

    Article  CAS  Google Scholar 

  159. Zhang P, Liu C, Wu W, Mao Y, Qin Y, Hu J, et al. Triapine/Ce6-loaded and lactose-decorated nanomicelles provide an effective chemo-photodynamic therapy for hepatocellular carcinoma through a reactive oxygen species-boosting and ferroptosis-inducing mechanism. Chem Eng J. 2021;425:131543.

    Article  CAS  Google Scholar 

  160. Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater. 2017;2:1–18.

    Article  CAS  Google Scholar 

  161. Dai Y, Xu C, Sun X, Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev. 2017;46:3830–52.

    Article  CAS  Google Scholar 

  162. Cai Y, Wei Z, Song C, Tang C, Han W, Dong X. Optical nano-agents in the second near-infrared window for biomedical applications. Chem Soc Rev. 2019;48:22–37.

    Article  CAS  Google Scholar 

  163. Liang P, Huang X, Wang Y, Chen D, Ou C, Zhang Q, et al. Tumor-microenvironment-responsive nanoconjugate for synergistic antivascular activity and phototherapy. ACS Nano. 2018;12:11446–57.

    Article  CAS  Google Scholar 

  164. Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X. Emerging strategies of cancer therapy based on ferroptosis. Adv Mater. 2018;30:1704007.

    Article  Google Scholar 

  165. Liu M, Liu B, Liu Q, Du K, Wang Z, He N. Nanomaterial-induced ferroptosis for cancer specific therapy. Coord Chem Rev. 2019;382:160–80.

    Article  CAS  Google Scholar 

  166. Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H, Brown LM, et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol. 2019;26:623–33. e629.

    Article  CAS  Google Scholar 

  167. Liang C, Zhang X, Yang M, Dong X. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 2019;31:1904197.

    Article  CAS  Google Scholar 

  168. Boland P, Wu J. Systemic therapy for hepatocellular carcinoma: beyond sorafenib. Chin Clin Oncol. 2018;7:50–50.

    Article  Google Scholar 

  169. Yue H, Gou L, Tang Z, Liu Y, Liu S, Tang H. Construction of pH-responsive nanocarriers in combination with ferroptosis and chemotherapy for treatment of hepatocellular carcinoma. Cancer Nanotechnol. 2022;13:1–21.

    Article  Google Scholar 

  170. Tang H, Chen D, Li C, Zheng C, Wu X, Zhang Y, et al. Dual GSH-exhausting sorafenib loaded manganese-silica nanodrugs for inducing the ferroptosis of hepatocellular carcinoma cells. Int J Pharmaceutics. 2019;572:118782.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express our sincere apology to those authors whose important work cannot be discussed and cited due to page limitations. GK is supported by the Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR)—Projets blancs; AMMICa US23/CNRS UMS3655; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Fondation pour la Recherche Médicale (FRM); a donation by Elior; Equipex Onco-Pheno-Screen; European Joint Programme on Rare Diseases (EJPRD); Gustave Roussy Odyssea, the European Union Horizon 2020 Projects Oncobiome and Crimson; Fondation Carrefour; Institut National du Cancer (INCa); Institut Universitaire de France; LabEx Immuno-Oncology (ANR-18-IDEX-0001); a Cancer Research ASPIRE Award from the Mark Foundation; the RHU Immunolife; Seerave Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumour Immune Elimination (SOCRATE); and SIRIC Cancer Research and Personalised Medicine (CARPEM). This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AA has written the initial draft of the manuscript, and DT, GK and JR have contributed to the revising, editing and finalising of the manuscript.

Corresponding authors

Correspondence to Daolin Tang, Guido Kroemer or Jun Ren.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

GK has been holding research contracts with Daiichi Sankyo, Eleor, Kaleido, Lytix Pharma, PharmaMar, Samsara, Sanofi, Sotio, Tollys, Vascage and Vasculox/Tioma. GK has been consulting for Reithera. GK is on the Board of Directors of the Bristol Myers Squibb Foundation France. GK is a scientific co-founder of everImmune, Osasuna Therapeutics, Samsara Therapeutics and Therafast Bio. GK is the inventor of patents covering therapeutic targeting of ageing, cancer, cystic fibrosis and metabolic disorders. The remaining authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Autophagy

An evolutionarily conserved process in eukaryote cells mediating engulfment of damaged organelles or cellular components within transitory organelles, so-called, autophagosomes, which subsequently fuse with lysosomes for ultimate degradation of the engulfed cargo.

Cathepsin B/L

Cathepsin B/L are lysosomal cysteine proteases playing a role in cellular functions, including intracellular proteolysis.

Chronic hepatitis

Refers to liver inflammation and impairment inflicted by hepatitis B and C viruses and drug toxicity.

Ferrireductases

A group of enzymes that mediate the reduction of Fe3+ to Fe2+.

Hemochromatosis

A disorder caused by accumulation and build-up of extra iron in the body.

Methylome

A technique analysing the distribution of 5-methylcytosine in the entire genome.

Myristoylation

A lipid modification mechanism in which a fatty acid known as myristic acid binds to the N-terminal domain of a protein.

Non-alcoholic steatohepatitis (NASH)

Refers to liver inflammation and impairment induced by fat accumulation in the liver.

Saponin

Natural glycosides, which constitute sugars like apiose, arabinose, galactose, and glucose, are found abundantly in plants.

Transcriptome

Refers to a thorough range/record of expressed mRNAs within an organism.

Xenobiotics

Refers to chemical compounds that are naturally produced or exists within an organism.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajoolabady, A., Tang, D., Kroemer, G. et al. Ferroptosis in hepatocellular carcinoma: mechanisms and targeted therapy. Br J Cancer 128, 190–205 (2023). https://doi.org/10.1038/s41416-022-01998-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01998-x

This article is cited by

Search

Quick links