Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bevacizumab induces ferroptosis and enhances CD8+ T cell immune activity in liver cancer via modulating HAT1 and increasing IL-9

Abstract

Bevacizumab is a recombinant humanized monoclonal immunoglobulin (Ig) G1 antibody of VEGF, and inhibits angiogenesis and tumor growth in hepatocellular carcinoma (HCC). Ferroptosis, a new form of regulated cell death function independently of the apoptotic machinery, has been accepted as an attractive target for pharmacological intervention; the ferroptosis pathway can enhance cell immune activity of anti-PD1 immunotherapy in HCC. In this study we investigated whether and how bevacizumab regulated ferroptosis and immune activity in liver cancer. Firstly, we performed RNA-sequencing in bevacizumab-treated human liver cancer cell line HepG2 cells, and found that bevacizumab significantly altered the expression of a number of genes including VEGF, PI3K, HAT1, SLC7A11 and IL-9 in liver cancer, bevacizumab upregulated 37 ferroptosis-related drivers, and downregulated 17 ferroptosis-related suppressors in particular. We demonstrated that bevacizumab triggered ferroptosis in liver cancer cells by driving VEGF/PI3K/HAT1/SLC7A11 axis. Clinical data confirmed that the expression levels of VEGF were positively associated with those of PI3K, HAT1 and SLC7A11 in HCC tissues. Meanwhile, we found that bevacizumab enhanced immune cell activity in tumor immune-microenvironment. We identified that HAT1 up-regulated miR-143 targeting IL-9 mRNA 3’UTR in liver cancer cells; bevacizumab treatment resulted in the increase of IL-9 levels and its secretion via VEGF/PI3K/HAT1/miR-143/IL-9 axis, which led to the inhibition of tumor growth in vivo through increasing the release of IL-2 and Granzyme B from activated CD8+ T cells. We conclude that in addition to inhibiting angiogenesis, bevacizumab induces ferroptosis and enhances CD8+ T cell immune activity in liver cancer. This study provides new insight into the mechanisms by which bevacizumab synergistically modulates ferroptosis and CD8+ T cell immune activity in liver cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bevacizumab-induced profiling confers ferroptosis in liver cancer.
Fig. 2: Bevacizumab is capable of inducing ferroptosis in liver cancer.
Fig. 3: Bevacizumab triggers ferroptosis by driving VEGF/PI3K/HAT1/SLC7A11 axis in liver cancer.
Fig. 4: Bevacizumab increases the levels of IL-9 and its secretion by VEGF/PI3K/HAT1/miR-143/IL-9 axis in liver cancer.
Fig. 5: Bevacizumab accelerates ferroptosis and stimulates immune cell activity in vivo.
Fig. 6: Bevacizumab triggers ferroptosis and CD8+ T cell immune activity in a model.

Similar content being viewed by others

Data availability

The RNA-Seq data are available at the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/), accession number: SUB14146476.

References

  1. Zhu AX, Abbas AR, de Galarreta MR, Guan Y, Lu S, Koeppen H, et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat Med. 2022;28:1599–611.

    Article  CAS  PubMed  Google Scholar 

  2. Qin S, Chen M, Cheng AL, Kaseb AO, Kudo M, Lee HC, et al. Atezolizumab plus bevacizumab versus active surveillance in patients with resected or ablated high-risk hepatocellular carcinoma (IMbrave050): a randomised, open-label, multicentre, phase 3 trial. Lancet. 2023;402:1835–47.

    Article  CAS  PubMed  Google Scholar 

  3. Yang C, Zhang H, Zhang L, Zhu AX, Bernards R, Qin W, et al. Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2023;20:203–22.

    Article  PubMed  Google Scholar 

  4. Cappuyns S, Philips G, Vandecaveye V, Boeckx B, Schepers R, Van Brussel T, et al. PD-1(-) CD45RA(+) effector-memory CD8 T cells and CXCL10(+) macrophages are associated with response to atezolizumab plus bevacizumab in advanced hepatocellular carcinoma. Nat Commun. 2023;14:7825–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016;15:385–403.

    Article  CAS  PubMed  Google Scholar 

  6. Mettu PS, Allingham MJ, Cousins SW. Incomplete response to Anti-VEGF therapy in neovascular AMD: exploring disease mechanisms and therapeutic opportunities. Prog Retin Eye Res. 2021;82:100906–160.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng AL, Hsu C, Chan SL, Choo SP, Kudo M. Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma. J Hepatol. 2020;72:307–19.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao X, Gao M, Liang J, Chen Y, Wang Y, Wang Y, et al. SLC7A11 reduces laser-induced choroidal neovascularization by inhibiting RPE ferroptosis and VEGF production. Front Cell Dev Biol. 2021;9:639851–14.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tan H, Chen J, Li Y, Li Y, Zhong Y, Li G, et al. Glabridin, a bioactive component of licorice, ameliorates diabetic nephropathy by regulating ferroptosis and the VEGF/Akt/ERK pathways. Mol Med. 2022;28:58–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer. 2019;18:26–54.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang HF, Gao X, Wang X, Chen X, Huang Y, Wang L, et al. The mechanisms of renin-angiotensin system in hepatocellular carcinoma: From the perspective of liver fibrosis, HCC cell proliferation, metastasis and angiogenesis, and corresponding protection measures. Biomed Pharmacother. 2021;141:111868–7.

    Article  CAS  PubMed  Google Scholar 

  12. Huang W, Chen K, Lu Y, Zhang D, Cheng Y, Li L, et al. ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma. Neoplasia. 2021;23:1227–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hamid MA, Moustafa MT, Càceres-Del-Carpio J, Kuppermann BD, Kenney MC. Effects of antiangiogenic drugs on expression patterns of epigenetic pathway genes. Ophthalmic Surg Lasers Imaging Retin. 2018;49:S29–S33.

    Google Scholar 

  14. Chen Q, Wei Y, Zhao Y, Xie X, Kuang N, Wei Y, et al. Intervening effects and molecular mechanism of quercitrin on PCV2-induced histone acetylation, oxidative stress and inflammatory response in 3D4/2 cells. Antioxidants. 2022;11:941–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang G, Yuan Y, Yuan H, Wang J, Yun H, Geng Y, et al. Histone acetyltransferase 1 is a succinyltransferase for histones and non-histones and promotes tumorigenesis. EMBO Rep. 2021;22:e50967–18.

    Article  CAS  PubMed  Google Scholar 

  16. Gruber JJ, Geller B, Lipchik AM, Chen J, Salahudeen AA, Ram AN, et al. HAT1 coordinates histone production and acetylation via H4 promoter binding. Mol Cell. 2019;75:711–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang X, Li L, Liang J, Shi L, Yang J, Yi X, et al. Histone acetyltransferase 1 promotes homologous recombination in DNA repair by facilitating histone turnover. J Biol Chem. 2013;288:18271–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18:280–96.

    Article  CAS  PubMed  Google Scholar 

  19. Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12:599–620.

    Article  CAS  PubMed  Google Scholar 

  20. Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy. 2021;17:2054–81.

    Article  CAS  PubMed  Google Scholar 

  21. Hao X, Zheng Z, Liu H, Zhang Y, Kang J, Kong X, et al. Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol. 2022;56:102463–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sangro B, Sarobe P, Hervás-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18:525–43.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liao P, Wang W, Wang W, Kryczek I, Li X, Bian Y, et al. CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 2022;40:365–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Turner CT, Lim D, Granville DJ. Granzyme B in skin inflammation and disease. Matrix Biol. 2019;75-76:126–40.

    Article  CAS  PubMed  Google Scholar 

  25. Park JA, Espinosa-Cotton M, Guo HF, Monette S, Cheung NV. Targeting tumor vasculature to improve antitumor activity of T cells armed ex vivo with T cell engaging bispecific antibody. J Immunother Cancer. 2023;11:e006680–14.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cózar B, Greppi M, Carpentier S, Narni-Mancinelli E, Chiossone L, Vivier E. Tumor-infiltrating natural killer cells. Cancer Discov. 2021;11:34–44.

    Article  PubMed  Google Scholar 

  27. Angkasekwinai P, Dong C. IL-9-producing T cells: potential players in allergy and cancer. Nat Rev Immunol. 2021;21:37–48.

    Article  CAS  PubMed  Google Scholar 

  28. Xiao L, Ma X, Ye L, Su P, Xiong W, Bi E, et al. IL-9/STAT3/fatty acid oxidation-mediated lipid peroxidation contributes to Tc9 cell longevity and enhanced antitumor activity. J Clin Invest. 2022;132:e153247–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qiu X, Shi Q, Huang Y, Jiang H, Qin S. miR-143/145 inhibits Th9 cell differentiation by targeting NFATc1. Mol Immunol. 2021;132:184–91.

    Article  CAS  PubMed  Google Scholar 

  30. Tang L, Huang ZP, Mei H, Hu Y. Insights gained from single-cell analysis of chimeric antigen receptor T-cell immunotherapy in cancer. Mil Med Res. 2023;10:52–85.

    PubMed  PubMed Central  Google Scholar 

  31. Li J, Xu C, Lee HJ, Ren S, Zi X, Zhang Z, et al. A genomic and epigenomic atlas of prostate cancer in Asian populations. Nature. 2020;580:93–99.

    Article  CAS  PubMed  Google Scholar 

  32. Wu J, Feng Z, Chen L, Li Y, Bian H, Geng J, et al. TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in collagen-induced arthritis mouse models. Nat Commun. 2022;13:676–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature. 2017;551:639–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang Y, Luo M, Zhang K, Zhang J, Gao T, Connell DO, et al. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun. 2020;11:433–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lago C, Gianesello M, Santomaso L, Leva G, Ballabio C, Anderle M, et al. Medulloblastoma and high-grade glioma organoids for drug screening, lineage tracing, co-culture and in vivo assay. Nat Protoc. 2023;18:2143–80.

    Article  CAS  PubMed  Google Scholar 

  36. Lánczky A, Győrffy B. Web-based survival analysis tool tailored for medical research (KMplot): development and implementation. J Med Internet Res. 2021;23:e27633–7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhou N, Bao J. FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations. Database. 2020;2020:baaa021.

  38. Greten TF, Villanueva A, Korangy F, Ruf B, Yarchoan M, Ma L, et al. Biomarkers for immunotherapy of hepatocellular carcinoma. Nat Rev Clin Oncol. 2023;20:780–98.

    Article  CAS  PubMed  Google Scholar 

  39. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tian R, Abarientos A, Hong J, Hashemi SH, Yan R, Dräger N, et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat Neurosci. 2021;24:1020–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z, et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett. 2015;356:971–7.

    Article  CAS  PubMed  Google Scholar 

  42. He F, Zhang P, Liu J, Wang R, Kaufman RJ, Yaden BC, et al. ATF4 suppresses hepatocarcinogenesis by inducing SLC7A11 (xCT) to block stress-related ferroptosis. J Hepatol. 2023;79:362–77.

    Article  CAS  PubMed  Google Scholar 

  43. Yan R, Xie E, Li Y, Li J, Zhang Y, Chi X, et al. The structure of erastin-bound xCT-4F2hc complex reveals molecular mechanisms underlying erastin-induced ferroptosis. Cell Res. 2022;32:687–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang HJ, Ran HF, Yin Y, Xu XG, Jiang BX, Yu SQ, et al. Catalpol improves impaired neurovascular unit in ischemic stroke rats via enhancing VEGF-PI3K/AKT and VEGF-MEK1/2/ERK1/2 signaling. Acta Pharm Sin. 2022;43:1670–85.

    Article  CAS  Google Scholar 

  45. Lebel EA, Boukamp P, Tafrov ST. Irradiation with heavy-ion particles changes the cellular distribution of human histone acetyltransferase HAT1. Mol Cell Biochem. 2010;339:271–84.

    Article  CAS  PubMed  Google Scholar 

  46. Xue Q, Kang R, Klionsky DJ, Tang D, Liu J, Chen X. Copper metabolism in cell death and autophagy. Autophagy. 2023;19:2175–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fan F, Liu P, Bao R, Chen J, Zhou M, Mo Z, et al. A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to potentiate cancer immune checkpoint therapy. Cancer Res. 2021;81:6233–45.

    Article  CAS  PubMed  Google Scholar 

  48. Hashimoto M, Araki K, Cardenas MA, Li P, Jadhav RR, Kissick HT, et al. PD-1 combination therapy with IL-2 modifies CD8(+) T cell exhaustion program. Nature. 2022;610:173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Renga G, Moretti S, Oikonomou V, Borghi M, Zelante T, Paolicelli G, et al. IL-9 and mast cells are key players of Candida albicans commensalism and pathogenesis in the gut. Cell Rep. 2018;23:1767–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou Q, Zhang H, Wang Z, Zeng H, Liu Z, Huang Q, et al. Poor clinical outcomes and immunoevasive contexture in interleukin-9 abundant muscle-invasive bladder cancer. Int J Cancer. 2020;147:3539–49.

    Article  CAS  PubMed  Google Scholar 

  51. Tang B, Zhu J, Wang Y, Chen W, Fang S, Mao W, et al. Targeted xCT-mediated ferroptosis and protumoral polarization of macrophages is effective against HCC and enhances the efficacy of the Anti-PD-1/L1 response. Adv Sci. 2023;10:e2203973–19.

    Article  Google Scholar 

  52. Dong S, Guo X, Han F, He Z, Wang Y. Emerging role of natural products in cancer immunotherapy. Acta Pharm Sin B. 2022;12:1163–85.

    Article  CAS  PubMed  Google Scholar 

  53. Yang H, Kang B, Ha Y, Lee SH, Kim I, Kim H, et al. High serum IL-6 correlates with reduced clinical benefit of atezolizumab and bevacizumab in unresectable hepatocellular carcinoma. JHEP Rep. 2023;5:100672–11.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mezzadra R, Sun C, Jae LT, Gomez-Eerland R, de Vries E, Wu W, et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature. 2017;549:106–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 2005;6:1245–52.

    Article  CAS  PubMed  Google Scholar 

  56. Yang R, Sun L, Li CF, Wang YH, Yao J, Li H, et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun. 2021;12:832–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang J, Sanmamed MF, Datar I, Su TT, Ji L, Sun J, et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell. 2019;176:334–47.

    Article  CAS  PubMed  Google Scholar 

  58. Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569:270–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu Y, Zhou N, Zhou L, Wang J, Zhou Y, Zhang T, et al. IL-2 regulates tumor-reactive CD8(+) T cell exhaustion by activating the aryl hydrocarbon receptor. Nat Immunol. 2021;22:358–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82372818 to XDZ; 82103066 to GY; 82302887 to HFY; 82303210 to YFW), The China Postdoctoral Science Foundation (2022M712389 to HFY; 2023M732624 to YFW; 2023M742621 to LNZ).

Author information

Authors and Affiliations

Authors

Contributions

XDZ, GY, and CYH concepted and designed the project; HFY Developed the methodology; CYH acquired the data Acquisition of data (provided animals, provided facilities, etc.); CYH, LNZ, YFW, HHZ, and PL analyzed and interpreted the data (e.g., statistical analysis, biostatistics, computational analysis); CYH and XDZ written, reviewed, and/or revised of the manuscript.

Corresponding authors

Correspondence to Guang Yang or Xiao-dong Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Cy., Lv, P., Yuan, Hf. et al. Bevacizumab induces ferroptosis and enhances CD8+ T cell immune activity in liver cancer via modulating HAT1 and increasing IL-9. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01299-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01299-4

Keywords

Search

Quick links