Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Krüppel-like factors: potential roles in blood-brain barrier dysfunction and epileptogenesis

Abstract

Epilepsy is a chronic and debilitating neurological disorder, known for the occurrence of spontaneous and recurrent seizures. Despite the availability of antiseizure drugs, 30% of people with epilepsy experience uncontrolled seizures and drug resistance, evidencing that new therapeutic options are required. The process of epileptogenesis involves the development and expansion of tissue capable of generating spontaneous recurrent seizures, during which numerous events take place, namely blood-brain barrier (BBB) dysfunction, and neuroinflammation. The consequent cerebrovascular dysfunction results in a lower seizure threshold, seizure recurrence, and chronic epilepsy. This suggests that improving cerebrovascular health may interrupt the pathological cycle responsible for disease development and progression. Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors, encountered in brain endothelial cells, glial cells, and neurons. KLFs are known to regulate vascular function and changes in their expression are associated with neuroinflammation and human diseases, including epilepsy. Hence, KLFs have demonstrated various roles in cerebrovascular dysfunction and epileptogenesis. This review critically discusses the purpose of KLFs in epileptogenic mechanisms and BBB dysfunction, as well as the potential of their pharmacological modulation as therapeutic approach for epilepsy treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main events of epileptogenesis.
Fig. 2: Healthy blood-brain barrier (BBB) versus damaged BBB in epilepsy.
Fig. 3: Krüppel-like factors (KLFs) structure and involvement in inflammation through transcriptional activation.
Fig. 4: Repressor element-1 silencing transcription factor (REST) structure and function as transcriptional repressor.
Fig. 5: Krüppel-like factor (KLF) modulation as potential therapeutic approach in epilepsy.

Similar content being viewed by others

References

  1. World Health Organization. Epilepsy: a public health imperative. Geneva: World Health Organization. 2019. p. 1–171.

  2. World Health Organization. Improving the lives of people with epilepsy: a technical brief. Geneva: World Health Organization. 2022. p. 1–43.

  3. Clossen BL, Reddy DS. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1519–38.

    Article  CAS  PubMed  Google Scholar 

  4. Heinemann U. Epilepsy; Basic mechanisms. In: Aminoff MJ, Daroff RB, editors. Encyclopedia of the Neurological Sciences. Amsterdam: Elsevier; 2014. p. 93–96.

  5. Fauser S, Tumani H. Epilepsy. Handb Clin Neurol. 2017;146:259–66.

    Article  PubMed  Google Scholar 

  6. Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet. 2019;393:689–701.

    Article  PubMed  Google Scholar 

  7. Pitkanen A, Lukasiuk K, Dudek E, Staley KJ. Epileptogenesis. Cold Spring Harb Perspect Med. 2015;5:1–18.

    Article  CAS  Google Scholar 

  8. Pitkänen A, Engel J. Past and present definitions of epileptogenesis and its biomarkers. Neurotherapeutics. 2014;11:231–41.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Klein P, Tyrlikova I. No prevention or cure of epilepsy as yet. Neuropharmacology. 2020;168:107762.

    Article  CAS  PubMed  Google Scholar 

  10. Mukhtar I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure. 2020;82:65–79.

    Article  PubMed  Google Scholar 

  11. Hunt RF, Boychuk JA, Smith BN. Neural circuit mechanisms of post–traumatic epilepsy. Front Cell Neurosci. 2013;7:89.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reddy SD, Younus I, Sridhar V, Reddy DS. Neuroimaging biomarkers of experimental epileptogenesis and refractory epilepsy. Int J Mol Sci. 2019;20:1–23.

    Article  Google Scholar 

  13. Lukasiuk K. Epileptogenesis. In: Aminoff MJ, Daroff RB, editors. Encyclopedia of the Neurological Sciences. Amsterdam: Elsevier; 2014. p. 196–199.

  14. Löscher W, Hirsch LJ, Schmidt D. The enigma of the latent period in the development of symptomatic acquired epilepsy—Traditional view versus new concepts. Epilepsy Behav. 2015;52:78–92.

    Article  PubMed  Google Scholar 

  15. Saito T, Saito Y, Sugai K, Nakagawa E, Komaki H, Okazaki T, et al. Late-onset epilepsy in children with acute febrile encephalopathy with prolonged convulsions: a clinical and encephalographic study. Brain Dev. 2013;35:531–9.

    Article  PubMed  Google Scholar 

  16. Łukawski K, Andres-Mach M, Czuczwar M, Łuszczki JJ, Kruszyński K, Czuczwar SJ. Mechanisms of epileptogenesis and preclinical approach to antiepileptogenic therapies. Pharmacol Rep. 2018;70:284–93.

    Article  PubMed  Google Scholar 

  17. Youn Y, Sung IK, Lee IG. The role of cytokines in seizures: interleukin (IL)-1β, IL-1Ra, IL-8, and IL-10. Korean J Pediatr. 2013;56:271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reiss Y, Bauer S, David B, Devraj K, Fidan E, Hattingen E, et al. The neurovasculature as a target in temporal lobe epilepsy. Brain Pathol. 2023;33:e13147.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guo D, Zhang B, Han L, Rensing NR, Wong M. Cerebral vascular and blood brain–barrier abnormalities in a mouse model of epilepsy and tuberous sclerosis complex. Epilepsia. 2024;65:483–96.

  20. Löscher W, Friedman A. Structural, molecular, and functional alterations of the blood-brain barrier during epileptogenesis and epilepsy: a cause, consequence, or both? Int J Mol Sci. 2020;21:591.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19:1584–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Swissa E, Serlin Y, Vazana U, Prager O, Friedman A. Blood-brain barrier dysfunction in status epileptics: mechanisms and role in epileptogenesis. Epilepsy Behav. 2019;101:106285.

    Article  PubMed  Google Scholar 

  23. van Lanen RHGJ, Haeren RHL, Staals J, Dings JTA, Schijns OEMG, Hoogland G, et al. Cerebrovascular glycocalyx damage and microcirculation impairment in patients with temporal lobe epilepsy. J Cereb Blood Flow Metab. 2023;43:1737–51.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhao F, Zhong L, Luo Y. Endothelial glycocalyx as an important factor in composition of blood-brain barrier. CNS Neurosci Ther. 2021;27:26–35.

    Article  CAS  PubMed  Google Scholar 

  25. Kutuzov N, Flyvbjerg H, Lauritzen M. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood–brain Barrier. Proc Natl Acad Sci USA. 2018;115:E9429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu J, Li X, Yin J, Hu Y, Gu Y, Pan S. Glycocalyx degradation leads to blood-brain barrier dysfunction and brain edema after asphyxia cardiac arrest in rats. J Cereb Blood Flow Metab. 2018;38:1979–92.

    Article  CAS  PubMed  Google Scholar 

  27. Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-brain barrier dysfunction amplifies the development of neuroinflammation: understanding of cellular events in brain microvascular endothelial cells for prevention and treatment of BBB dysfunction. Front Cell Neurosci. 2021;15:661838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Vliet EA, Aronica E, Gorter JA. Role of blood-brain barrier in temporal lobe epilepsy and pharmacoresistance. Neuroscience. 2014;277:455–73.

    Article  PubMed  Google Scholar 

  29. Gilad R, Lampl Y, Eilam A, Boaz M, Loyberboim M. SPECT-DTPA as a tool for evaluating the blood-brain barrier in post-stroke seizures. J Neurol. 2012;259:2041–4.

    Article  CAS  PubMed  Google Scholar 

  30. Mendes NF, Pansani AP, Carmanhães ERF, Tange P, Meireles JV, Ochikubo M, et al. The blood-brain barrier breakdown during acute phase of the pilocarpine model of epilepsy Is dynamic and time-dependent. Front Neurol. 2019;10:382.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu WY, Wang ZB, Wang Y, Tong LC, Li Y, Wei X, et al. Increasing the permeability of the blood-brain barrier in three different models in vivo. CNS Neurosci Ther. 2015;21:568–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morris G, Fernandes BS, Puri BK, Walker AJ, Carvalho AF, Berk M. Leaky brain in neurological and psychiatric disorders: drivers and consequences. Aust N Z J Psychiatry. 2018;52:924–48.

    Article  PubMed  Google Scholar 

  33. Greene C, Hanley N, Campbell M. Blood-brain barrier associated tight junction disruption is a hallmark feature of major psychiatric disorders. Transl Psychiatry. 2020;10:373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deshwar AR, Cytrynbaum C, Murthy H, Zon J, Chitayat D, Volpatti J, et al. Variants in CLDN5 cause a syndrome characterized by seizures, microcephaly and brain calcifications. Brain. 2023;146:2285–97.

    Article  PubMed  Google Scholar 

  35. Han H, Mann A, Ekstein D, Eyal S. Breaking bad: the structure and function of the blood-brain barrier in epilepsy. AAPS J. 2017;19:973–88.

    Article  CAS  PubMed  Google Scholar 

  36. Jiruska P, Freestone D, Gnatkovsky V, Wang Y. An update on the seizures beget seizures theory. Epilepsia. 2023;64:S13–S24.

    Article  PubMed  Google Scholar 

  37. Boison D, Sandau US, Ruskin DN, Kawamura M, Masino SA. Homeostatic control of brain function—new approaches to understand epileptogenesis. Front Cell Neurosci. 2013;7:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sano F, Shigetomi E, Shinozaki Y, Tsuzukiyama H, Saito K, Mikoshiba K, et al. Reactive astrocyte-driven epileptogenesis is induced by microglia initially activated following status epilepticus. JCI Insight. 2021;6:e135391.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Benson MJ, Manzanero S, Borges K. Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models. Epilepsia. 2015;56:895–905.

    Article  CAS  PubMed  Google Scholar 

  40. Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun. 2019;10:5816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Henning L, Unichenko P, Bedner P, Steinhäuser C, Henneberger C. Astrocytes as initiators of epilepsy. Neurochem Res. 2022;48:1091–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017;541:481–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ortinski PI, Dong J, Mungenast A, Yue C, Takano H, Watson DJ, et al. Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci. 2010;13:584–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gorter JA, Aronica E, van Vliet EA. The roof is leaking and a storm is raging: repairing the blood-brain barrier in the fight against epilepsy. Epilepsy Curr. 2019;19:177–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang X, Wang D, Zhang B, Zhu J, Zhou Z, Cui L. Regulation of microglia by glutamate and its signal pathway in neurodegenerative diseases. Drug Discov Today. 2020;25:1074–85.

    Article  CAS  PubMed  Google Scholar 

  46. Librizzi L, Noè F, Vezzani A, De Curtis M, Ravizza T. Seizure-induced brain-borne inflammation sustains seizure recurrence and blood-brain barrier damage. Ann Neurol. 2012;72:82–90.

    Article  PubMed  Google Scholar 

  47. Marchi N, Granata T, Ghosh C, Janigro D. Blood-brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia. 2012;53:1877–86.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Luo J. TGF-β as a key modulator of astrocyte reactivity: disease relevance and therapeutic implications. Biomedicines. 2022;10:1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Diniz LP, Matias I, Siqueira M, Stipursky J, Gomes FCA. Astrocytes and the TGF-β1 pathway in the healthy and diseased brain: a double-edged sword. Mol Neurobiol. 2019;56:4653–79.

    Article  CAS  PubMed  Google Scholar 

  50. Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A, et al. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis. 2015;78:115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Michalak Z, Sano T, Engel T, Miller-Delaney SFC, Lerner-Natoli M, Henshall DC. Spatio-temporally restricted blood-brain barrier disruption after intra-amygdala kainic acid-induced status epilepticus in mice. Epilepsy Res. 2013;103:167–79.

    Article  PubMed  Google Scholar 

  52. Van Vliet EA, Otte WM, Wadman WJ, Aronica E, Kooij G, De Vries HE, et al. Blood-brain barrier leakage after status epilepticus in rapamycin-treated rats I: magnetic resonance imaging. Epilepsia. 2016;57:59–69.

    Article  PubMed  Google Scholar 

  53. Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med. 2010;16:413–9.

    Article  CAS  PubMed  Google Scholar 

  54. Patterson KP, Brennan GP, Curran M, Kinney-Lang E, Dubé C, Rashid F, et al. Rapid, coordinate inflammatory responses after experimental febrile status epilepticus: implications for epileptogenesis. eNeuro. 2015;2:0034–15.

    Article  Google Scholar 

  55. Ravizza T, Vezzani A. Pharmacological targeting of brain inflammation in epilepsy: therapeutic perspectives from experimental and clinical studies. Epilepsia Open. 2018;3:133–42.

    Article  PubMed  PubMed Central  Google Scholar 

  56. de Vries EE, van den Munckhof B, Braun KPJ, van Royen-Kerkhof A, de Jager W, Jansen FE. Inflammatory mediators in human epilepsy: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2016;63:177–90.

    Article  PubMed  Google Scholar 

  57. Sweet DR, Fan L, Hsieh PN, Jain MK. Krüppel-like factors in vascular inflammation: mechanistic insights and therapeutic potential. Front Cardiovasc Med. 2018;5:6.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pollak NM, Hoffman M, Goldberg IJ, Drosatos K. Krüppel-like factors: crippling and un-crippling metabolic pathways. JACC Basic Transl Sci. 2018;3:132–56.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tang X, Liu K, Hamblin MH, Xu Y, Yin KJ. Genetic deletion of krüppel-Like factor 11 aggravates ischemic brain injury. Mol Neurobiol. 2018;55:2911–21.

    Article  CAS  PubMed  Google Scholar 

  60. Yin KJ, Hamblin M, Fan Y, Zhang J, Chen YE. Krüpple-like factors in the central nervous system: novel mediators in stroke. Metab Brain Dis. 2015;30:401–10.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou C, Sun P, Hamblin MH, Yin KJ. Genetic deletion of Krüppel-like factor 11 aggravates traumatic brain injury. J Neuroinflammation. 2022;19:281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McConnell BB, Yang VW. Mammalian Krüppel-like factors in health and diseases. Physiol Rev. 2010;90:1337–81.

    Article  CAS  PubMed  Google Scholar 

  63. Kotlyarov S, Kotlyarova A. Participation of Krüppel-like factors in atherogenesis. Metabolites. 2023;13:448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jha P, Das H. KLF2 in regulation of NF-κB-mediated immune cell function and inflammation. Int J Mol Sci. 2017;18:2383.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Presnell JS, Schnitzler CE, Browne WE. KLF/SP transcription factor family evolution: expansion, diversification, and innovation in eukaryotes. Genome Biol Evol. 2015;7:2289–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaushik DK, Gupta M, Das S, Basu A. Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation. J Neuroinflammation. 2010;7:68.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Turpaev KT. Transcription factor KLF2 and its role in the regulation of inflammatory processes. Biochemistry. 2020;85:54–67.

    CAS  PubMed  Google Scholar 

  68. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996;87:953–9.

    Article  CAS  PubMed  Google Scholar 

  69. Pons D, De Vries FR, Van Den Elsen PJ, Heijmans BT, Quax PHA, Jukema JW. Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease. Eur Heart J. 2009;30:266–77.

    Article  CAS  PubMed  Google Scholar 

  70. Chen Y, Chen J, Chen Y, Li Y. miR-146a/KLF4 axis in epileptic mice: a novel regulator of synaptic plasticity involving STAT3 signaling. Brain Res. 2022;1790:147988.

    Article  CAS  PubMed  Google Scholar 

  71. Thompson R, Chan C. NRSF and its epigenetic effectors: new treatments for neurological disease. Brain Sci. 2018;8:1–12.

    Article  Google Scholar 

  72. Jin L, Liu Y, Wu Y, Huang Y, Zhang D. REST is not resting: REST/NRSF in health and disease. Biomolecules. 2023;13:1–23.

    Article  Google Scholar 

  73. Carminati E, Buffolo F, Rocchi A, Michetti C, Cesca F, Benfenati F. Mild inactivation of RE-1 Silencing Transcription Factor (REST) reduces susceptibility to kainic acid-induced seizures. Front Cell Neurosci. 2020;13:1–10.

    Article  Google Scholar 

  74. Navarrete-Modesto V, Orozco-Suárez S, Alonso-Vanegas M, Feria-Romero IA, Rocha L. REST/NRSF transcription factor is overexpressed in hippocampus of patients with drug-resistant mesial temporal lobe epilepsy. Epilepsy Behav. 2019;94:118–23.

    Article  PubMed  Google Scholar 

  75. McClelland S, Brennan GP, Dubé C, Rajpara S, Iyer S, Richichi C, et al. The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes. Elife. 2014;3:e01267.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Natali G, Michetti C, Krawczun-Rygmaczewska A, Floss T, Cesca F, Benfenati F. Conditional knockout of REST/NRSF in excitatory neurons reduces seizure susceptibility to chemical kindling. Front Cell Neurosci. 2023;17:1267609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Prada I, Marchaland J, Podini P, Magrassi L, D’Alessandro R, Bezzi P, et al. REST/NRSF governs the expression of dense-core vesicle gliosecretion in astrocytes. J Cell Biol. 2011;193:537–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schiffer D, Caldera V, Mellai M, Conforti P, Cattaneo E, Zuccato C. Repressor element-1 silencing transcription factor (REST) is present in human control and Huntington’s disease neurones. Neuropathol Appl Neurobiol. 2014;40:899–910.

    Article  CAS  PubMed  Google Scholar 

  79. Palm K, Belluardo N, Metsis M, Timmusk T. Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. J Neurosci. 1998;18:1280–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Parrish JZ, Kim CC, Tang L, Bergquist S, Wang T, DeRisi JL, et al. Krüppel mediates the selective rebalancing of ion channel expression. Neuron. 2014;82:537–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jeong KH, Lee KE, Kim SY, Cho KO. Upregulation of Krüppel-like factor 6 in the mouse hippocampus after pilocarpine-induced status epilepticus. Neuroscience. 2011;186:170–8.

    Article  CAS  PubMed  Google Scholar 

  82. Orlova KA, Tsai V, Baybis M, Heuer GG, Sisodiya S, Thom M, et al. Early progenitor cell marker expression distinguishes type II from type I focal cortical dysplasias. J Neuropathol Exp Neurol. 2010;69:850–63.

    Article  CAS  PubMed  Google Scholar 

  83. Yao K, Duan Z, Zhou J, Li L, Zhai F, Dong Y, et al. Clinical and immunohistochemical characteristics of type II and type I focal cortical dysplasia. Oncotarget. 2016;7:76415–22.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhu S, Tai C, MacVicar BA, Jia W, Cynader MS. Glutamatergic stimulation triggers rapid Krüpple-like factor 4 expression in neurons and the overexpression of KLF4 sensitizes neurons to NMDA-induced caspase-3 activity. Brain Res. 2009;1250:49–62.

    Article  CAS  PubMed  Google Scholar 

  85. Zhou S, Li J, Zhang XN, Xiong W. MicroRNA-124 modulates neuroinflammation in acute methanol poisoning rats via targeting Krüppel-like factor-6. Bioengineered. 2022;13:13507–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ávila-Mendoza J, Subramani A, Sifuentes CJ, Denver RJ. Molecular mechanisms for Krüppel-like Factor 13 actions in hippocampal neurons. Mol Neurobiol. 2020;57:3785–802.

    Article  PubMed  Google Scholar 

  87. Tapia-Ramírez J, Eggen BJL, Peral-Rubio MJ, Toledo-Aral JJ, Mandel G. A single zinc finger motif in the silencing factor REST represses the neural-specific type II sodium channel promoter. Proc Natl Acad Sci USA. 1997;94:1177–82.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yeo M, Berglund K, Augustine G, Liedtke W. Novel repression of Kcc2 transcription by REST-RE-1 controls developmental switch in neuronal chloride. J Neurosci. 2009;29:14652–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. McMoneagle E, Zhou J, Zhang S, Huang W, Josiah SS, Ding K, et al. Neuronal K+ -Cl- cotransporter KCC2 as a promising drug target for epilepsy treatment. Acta Pharmacol Sin. 2024;45:1–22.

    Article  CAS  PubMed  Google Scholar 

  90. Spencer EM, Chandler KE, Haddley K, Howard MR, Hughes D, Belyaev ND, et al. Regulation and role of REST and REST4 variants in modulation of gene expression in in vivo and in vitro in epilepsy models. Neurobiol Dis. 2006;24:41–52.

    Article  CAS  PubMed  Google Scholar 

  91. McClelland S, Flynn C, Dubé C, Richichi C, Zha Q, Ghestem A, et al. Neuron-restrictive silencer factor-mediated hyperpolarization-activated cyclic nucleotide gated channelopathy in experimental temporal lobe epilepsy. Ann Neurol. 2011;70:454–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hu XL, Cheng X, Cai L, Tan GH, Xu L, Feng XY, et al. Conditional deletion of NRSF in forebrain neurons accelerates epileptogenesis in the kindling model. Cereb Cortex. 2011;21:2158–65.

    Article  PubMed  Google Scholar 

  93. Aronica E, Bauer S, Bozzi Y, Caleo M, Dingledine R, Gorter JA, et al. Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia. 2017;58:27–38.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhang X, Tang X, Ma F, Fan Y, Sun P, Zhu T, et al. Endothelium-targeted overexpression of Krüppel-like factor 11 protects the blood-brain barrier function after ischemic brain injury. Brain Pathol. 2020;30:746–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nayak L, Goduni L, Takami Y, Sharma N, Kapil P, Jain MK, et al. Kruppel-like factor 2 is a transcriptional regulator of chronic and acute inflammation. Am J Pathol. 2013;182:1696–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, et al. KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med. 2004;199:1305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H, et al. Krüppel-like factor 4 regulates macrophage polarization. J Clin Invest. 2011;121:2736–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lin Z, Natesan V, Shi H, Dong F, Kawanami D, Mahabeleshwar GH, et al. Kruppel-like factor 2 regulates endothelial barrier function. Arterioscler Thromb Vasc Biol. 2010;30:1952–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shi H, Sheng B, Zhang F, Wu C, Zhang R, Zhu J, et al. Kruppel-like factor 2 protects against ischemic stroke by regulating endothelial blood brain barrier function. Am J Physiol Heart Circ Physiol. 2013;304:796–805.

    Article  Google Scholar 

  100. Park JH, Riew TR, Shin YJ, Park JM, Cho JM, Lee MY. Induction of Krüppel-like factor 4 expression in reactive astrocytes following ischemic injury in vitro and in vivo. Histochem Cell Biol. 2014;141:33–42.

    Article  CAS  PubMed  Google Scholar 

  101. Wang C, Li L. The critical role of KLF4 in regulating the activation of A1/A2 reactive astrocytes following ischemic stroke. J Neuroinflammation. 2023;20:40.

    Article  Google Scholar 

  102. Zhang X, Wang L, Han Z, Dong J, Pang D, Fu Y, et al. KLF4 alleviates cerebral vascular injury by ameliorating vascular endothelial inflammation and regulating tight junction protein expression following ischemic stroke. J Neuroinflammation. 2020;17:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ma J, Wang P, Liu Y, Zhao L, Li Z, Xue Y. Krüppel-like factor 4 regulates blood-tumor barrier permeability via ZO-1, occludin and claudin-5. J Cell Physiol. 2014;229:916–26.

    Article  CAS  PubMed  Google Scholar 

  104. Cowan CE, Kohler EE, Dugan TA, Mirza MK, Malik AB, Wary KK. Kruppel-like factor-4 transcriptionally regulates VE-cadherin expression and endothelial barrier function. Circ Res. 2010;107:959–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wen M, Ye J, Han Y, Huang L, Yang H, Jiang W, et al. Hypertonic saline regulates microglial M2 polarization via miR-200b/KLF4 in cerebral edema treatment. Biochem Biophys Res Commun. 2018;499:345–53.

    Article  CAS  PubMed  Google Scholar 

  106. Wang X, Li H, Chen S, He J, Chen W, Ding Y, et al. P300/CBP-associated factor (PCAF) attenuated M1 macrophage inflammatory responses possibly through KLF2 and KLF4. Immunol Cell Biol. 2021;99:724–36.

    Article  CAS  PubMed  Google Scholar 

  107. El-Deeb NK, El-Tanbouly DM, Khattab MA, EL-Yamany MF, Mohamed AF. Crosstalk between PI3K/AKT/KLF4 signaling and microglia M1/M2 polarization as a novel mechanistic approach towards flibanserin repositioning in Parkinson’s disease. Int Immunopharmacol. 2022;112:109191.

    Article  CAS  PubMed  Google Scholar 

  108. Kapoor N, Niu J, Saad Y, Kumar S, Sirakova T, Becerra E, et al. Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP. J Immunol. 2015;194:6011–23.

    Article  CAS  PubMed  Google Scholar 

  109. Ghosh A, Pahan K. Gemfibrozil, a lipid-lowering drug, induces suppressor of cytokine signaling 3 in glial cells: implications for neurodegenerative disorders. J Biol Chem. 2012;287:27189–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kaushik DK, Mukhopadhyay R, Kumawat KL, Gupta M, Basu A. Therapeutic targeting of Krüppel-like factor 4 abrogates microglial activation. J Neuroinflammation. 2012;9:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kaushik DK, Thounaojam MC, Kumawat KL, Gupta M, Basu A. Interleukin-1β orchestrates underlying inflammatory responses in microglia via Krüppel-like factor 4. J Neurochem. 2013;127:233–44.

    Article  CAS  PubMed  Google Scholar 

  112. Uta R, François C, Marvin H, Philipp A, Andrea PP, Henrik W, et al. Anti-inflammatory properties of Honokiol in activated primary microglia and astrocytes. J Neuroimmunol. 2018;323:78–86.

    Article  CAS  Google Scholar 

  113. Zhuo Z, Wang Y, Kong H, Fu T. GKLF, a transcriptional activator of Txnip, drives microglia activation in kainic acid-induced murine models of epileptic seizures. Int Immunopharmacol. 2023;121:110426.

    Article  CAS  PubMed  Google Scholar 

  114. Evans PM, Zhang W, Chen X, Yang J, Bhakat KK, Liu C. Kruppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation. J Biol Chem. 2007;282:33994–4002.

    Article  CAS  PubMed  Google Scholar 

  115. Zhang Y, Lei CQ, Hu YH, Xia T, Li M, Zhong B, et al. Krüppel-like factor 6 is a co-activator of NF-κB that mediates p65-dependent transcription of selected downstream genes. J Biol Chem. 2014;289:12876–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Buffolo F, Petrosino V, Albini M, Moschetta M, Carlini F, Floss T, et al. Neuroinflammation induces synaptic scaling through IL-1β-mediated activation of the transcriptional repressor REST/NRSF. Cell Death Dis. 2021;12:180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang W, Wang X, Chen L, Zhang Y, Xu Z, Liu J, et al. The microRNA miR-124 suppresses seizure activity and regulates CREB1 activity. Expert Rev Mol Med. 2016;18:e4.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Tuomisto TT, Lumivuori H, Kansanen E, Häkkinen SK, Turunen MP, Van Thienen JV, et al. Simvastatin has an anti-inflammatory effect on macrophages via upregulation of an atheroprotective transcription factor, Kruppel-like factor 2. Cardiovasc Res. 2008;78:175–84.

    Article  CAS  PubMed  Google Scholar 

  119. Maejima T, Inoue T, Kanki Y, Kohro T, Li G, Ohta Y, et al. Direct evidence for pitavastatin induced chromatin structure change in the KLF4 gene in endothelial cells. PLoS One. 2014;9:e96005.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ohnesorge N, Viemann D, Schmidt N, Czymai T, Spiering D, Schmolke M, et al. Erk5 activation elicits a vasoprotective endothelial phenotype via induction of Kruppel-like factor 4 (KLF4). J Biol Chem. 2010;285:26199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bu DX, Tarrio M, Grabie N, Zhang Y, Yamazaki H, Stavrakis G, et al. Statin-induced Krüppel-like factor 2 expression in human and mouse T cells reduces inflammatory and pathogenic responses. J Clin Invest. 2010;120:1961–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sen-Banerjee S, Mir S, Lin Z, Hamik A, Atkins GB, Das H, et al. Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation. 2005;112:720–6.

    Article  CAS  PubMed  Google Scholar 

  123. Wang Y, Zhao B, Zhang Y, Tang Z, Shen Q, Zhang Y, et al. Krüppel-like factor 4 is induced by rapamycin and mediates the anti-proliferative effect of rapamycin in rat carotid arteries after balloon injury. Br J Pharmacol. 2012;165:2378–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen S, Ye J, Chen X, Shi J, Wu W, Lin W, et al. Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-κB pathway dependent of HDAC3. J Neuroinflammation. 2018;15:150.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Wang Z, Leng Y, Tsai LK, Leeds P, Chuang DM. Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab. 2011;31:52–7.

    Article  PubMed  Google Scholar 

  126. Gong F, Shi Q, Mou X, Wang K, Wang Q, Wang H. Atorvastatin mitigates memory deficits and brain monocyte infiltration in chronic hypercholesterolemia. Aging 2023;15:13669–79.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Parmar KM, Nambudiri V, Dai G, Larman HB, Gimbrone MA, García-Cardeña G. Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J Biol Chem. 2005;280:26714–9.

    Article  CAS  PubMed  Google Scholar 

  128. Guo J, Li J, Zhou M, Qin F, Zhang S, Wu B, et al. Statin treatment reduces the risk of poststroke seizures. Neurology 2015;85:701–7.

    Article  CAS  PubMed  Google Scholar 

  129. Hufthy Y, Bharadwaj M, Gupta S, Hussain D, Joseph PJS, Khan A, et al. Statins as antiepileptogenic drugs: analyzing the evidence and identifying the most promising statin. Epilepsia 2022;63:1889–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Etminan M, Samii A, Brophy JM. Statin use and risk of epilepsy: a nested case-control study. Neurology 2010;75:1496–500.

    Article  CAS  PubMed  Google Scholar 

  131. Lin FJ, Lin HW, Ho YF. Effect of statin intensity on the risk of epilepsy after ischaemic stroke: real-world evidence from population-based health claims. CNS Drugs. 2018;32:367–76.

    Article  CAS  PubMed  Google Scholar 

  132. de Oliveira CV, Grigoletto J, Canzian JM, Duarte MMMF, Duarte T, Furian AF, et al. Effect of atorvastatin on behavioral alterations and neuroinflammation during epileptogenesis. Epilepsy Behav. 2018;78:109–17.

    Article  PubMed  Google Scholar 

  133. Üzüm G, Akgün-Dar K, Aksu U. The effects of atorvastatin on memory deficit and seizure susceptibility in pentylentetrazole-kindled rats. Epilepsy Behav. 2010;19:284–9.

    Article  PubMed  Google Scholar 

  134. Iqubal A, Sharma S, Sharma K, Bhavsar A, Hussain I, Iqubal MK, et al. Intranasally administered pitavastatin ameliorates pentylenetetrazol-induced neuroinflammation, oxidative stress and cognitive dysfunction. Life Sci. 2018;211:172–81.

    Article  CAS  PubMed  Google Scholar 

  135. Hamik A, Lin Z, Kumar A, Balcells M, Sinha S, Katz J, et al. Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem. 2007;282:13769–79.

    Article  CAS  PubMed  Google Scholar 

  136. Curatolo P, Moavero R. mTOR inhibitors as a new therapeutic option for epilepsy. Expert Rev Neurother. 2013;13:627–38.

    Article  CAS  PubMed  Google Scholar 

  137. Van Vliet EA, Forte G, Holtman L, Den Burger JCG, Sinjewel A, De Vries HE, et al. Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood-brain barrier leakage but not microglia activation. Epilepsia 2012;53:1254–63.

    Article  PubMed  Google Scholar 

  138. Kwon IS, Wang W, Xu S, Jin ZG. Histone deacetylase 5 interacts with Krüppel-like factor 2 and inhibits its transcriptional activity in endothelium. Cardiovasc Res. 2014;104:127–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zohre S, Kazem NK, Abolfazl A, Mohammad RY, Aliakbar M, Alizadeh E, et al. Trichostatin A-induced apoptosis is mediated by Kruppel-like factor 4 in ovarian and lung cancer. Asian Pac J Cancer Prev. 2014;15:6581–6.

    Article  PubMed  Google Scholar 

  140. Yu T, Chen X, Zhang W, Liu J, Avdiushko R, Napier DL, et al. KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer. Cell Death Differ. 2016;23:207–15.

    Article  CAS  PubMed  Google Scholar 

  141. Bicker J, Alves G, Fonseca C, Falcão A, Fortuna A. Repairing blood-CNS barriers: future therapeutic approaches for neuropsychiatric disorders. Pharm Res. 2020;162:105226.

    Article  CAS  Google Scholar 

  142. Moschidou D, Mukherjee S, Blundell MP, Drews K, Jones GN, Abdulrazzak H, et al. Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther. 2012;20:1953–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kee HJ, Kook H. Krüppel-like factor 4 mediates histone deacetylase inhibitor-induced prevention of cardiac hypertrophy. J Mol Cell Cardiol. 2009;47:770–80.

    Article  CAS  PubMed  Google Scholar 

  144. Kim SJ, Lee BH, Lee YS, Kang KS. Defective cholesterol traffic and neuronal differentiation in neural stem cells of Niemann-Pick type C disease improved by valproic acid, a histone deacetylase inhibitor. Biochem Biophys Res Commun. 2007;360:593–9.

    Article  CAS  PubMed  Google Scholar 

  145. van Vliet EA, Marchi N. Neurovascular unit dysfunction as a mechanism of seizures and epilepsy during aging. Epilepsia 2022;63:1297–313.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Rempe RG, Hartz AMS, Soldner ELB, Sokola BS, Alluri SR, Abner EL, et al. Matrix metalloproteinase-mediated blood-brain barrier dysfunction in epilepsy. J Neurosci. 2018;38:4301–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Fundo Europeu de Desenvolvimento Regional (FEDER) through Portugal2020 in the scope of the Operational Programme for Competitiveness and Internationalization; Fundação para a Ciência e Tecnologia (FCT), Portuguese Agency for Scientific Research, within the scope of the research project 2022.03133.PTDC and Ph.D. research grant 2021.06125.BD; Spanish Ministerio de Ciencia e Innovación (PID2021-123462OB-I00); the Generalitat de Catalunya (2021 SGR 00288); CIBERNED (Grant CB06/05/2004); and Institut de Neurociències UB, (CEX2021-001159-M). ME is Serra Hunter fellow.

Author information

Authors and Affiliations

Authors

Contributions

Ana Beatriz Santos: Conceptualization, Data curation, Formal analysis, Investigation, Writing—original draft, Writing—review & editing; Andreia Carona: Formal analysis, Writing—original draft, Writing—review & editing; Miren Ettcheto: Formal analysis, Writing—review & editing; Antoni Camins: Formal analysis, Writing—review & editing; Amílcar Falcão: Formal analysis, Writing—review & editing; Ana Fortuna: Data curation, Formal analysis, Writing—original draft, Writing—review & editing; Joana Bicker: Conceptualization; Formal analysis, Writing—original draft, Writing—review & editing; Funding acquisition.

Corresponding author

Correspondence to Joana Bicker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, A.B., Carona, A., Ettcheto, M. et al. Krüppel-like factors: potential roles in blood-brain barrier dysfunction and epileptogenesis. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01285-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01285-w

Keywords

Search

Quick links