Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Endothelial deubiquinatase YOD1 mediates Ang II-induced vascular endothelial-mesenchymal transition and remodeling by regulating β-catenin

Abstract

Hypertension is a prominent contributor to vascular injury. Deubiquinatase has been implicated in the regulation of hypertension-induced vascular injury. In the present study we investigated the specific role of deubiquinatase YOD1 in hypertension-induced vascular injury. Vascular endothelial endothelial-mesenchymal transition (EndMT) was induced in male WT and YOD1−/− mice by administration of Ang II (1 μg/kg per minute) via osmotic pump for four weeks. We showed a significantly increased expression of YOD1 in mouse vascular endothelial cells upon Ang II stimulation. Knockout of YOD1 resulted in a notable reduction in EndMT in vascular endothelial cells of Ang II-treated mouse; a similar result was observed in Ang II-treated human umbilical vein endothelial cells (HUVECs). We then conducted LC-MS/MS and co-immunoprecipitation (Co-IP) analyses to verify the binding between YOD1 and EndMT-related proteins, and found that YOD1 directly bound to β-catenin in HUVECs via its ovarian tumor-associated protease (OTU) domain, and histidine at 262 performing deubiquitination to maintain β-catenin protein stability by removing the K48 ubiquitin chain from β-catenin and preventing its proteasome degradation, thereby promoting EndMT of vascular endothelial cells. Oral administration of β-catenin inhibitor MSAB (20 mg/kg, every other day for four weeks) eliminated the protective effect of YOD1 deletion on vascular endothelial injury. In conclusion, we demonstrate a new YOD1-β-catenin axis in regulating Ang II-induced vascular endothelial injury and reveal YOD1 as a deubiquitinating enzyme for β-catenin, suggesting that targeting YOD1 holds promise as a potential therapeutic strategy for treating β-catenin-mediated vascular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: YOD1 is upregulated in Ang II-induced vascular endothelial injury.
Fig. 2: Knockout of YOD1 alleviated Ang II-induced vascular remodeling in vivo.
Fig. 3: Silencing YOD1 alleviated Ang II-induced endothelial EndMT in HUVECs.
Fig. 4: YOD1 directly interacts with β-catenin.
Fig. 5: YOD1 regulates the stability of β-catenin protein through deubiquitination.
Fig. 6: MSAB effectively blocks YOD1-mediated vascular endothelial injury and vascular remodeling in vivo.
Fig. 7: G5 alleviated Ang II-mediated vascular remodeling in mice.
Fig. 8: Schematic illustration of the main finding in this study.

Similar content being viewed by others

References

  1. Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16:223–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: A systematic analysis of population-based studies from 90 countries. Circulation. 2016;134:441–50.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gerdts E, Sudano I, Brouwers S, Borghi C, Bruno RM, Ceconi C, et al. Sex differences in arterial hypertension. Eur Heart J. 2022;43:4777–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harrison DG, Coffman TM, Wilcox CS. Pathophysiology of hypertension: The mosaic theory and beyond. Circ Res. 2021;128:847–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eguchi S, Sparks MA, Sawada H, Lu HS, Daugherty A, Zhuo JL. Recent advances in understanding the molecular pathophysiology of angiotensin ii receptors; lessons from cell-selective receptor deletion in mice. Can J Cardiol. 2023;39:1795–807.

    Article  PubMed  Google Scholar 

  6. Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, et al. Angiotensin ii signal transduction: An update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018;98:1627–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pan X, Shao Y, Wu F, Wang Y, Xiong R, Zheng J, et al. Fgf21 prevents angiotensin ii-induced hypertension and vascular dysfunction by activation of ace2/angiotensin-(1-7) axis in mice. Cell Metab. 2018;27:1323–37. e1325.

    Article  CAS  PubMed  Google Scholar 

  8. Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacol Rev. 2021;73:924–67.

    Article  CAS  PubMed  Google Scholar 

  9. Testai L, Brancaleone V, Flori L, Montanaro R, Calderone V. Modulation of endmt by hydrogen sulfide in the prevention of cardiovascular fibrosis. Antioxidants. 2021;10:910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Markwald RR, Fitzharris TP, Manasek FJ. Structural development of endocardial cushions. Am J Anat. 1977;148:85–119.

    Article  CAS  PubMed  Google Scholar 

  11. Pan JA, Zhang H, Lin H, Gao L, Zhang HL, Zhang JF, et al. Irisin ameliorates doxorubicin-induced cardiac perivascular fibrosis through inhibiting endothelial-to-mesenchymal transition by regulating ros accumulation and autophagy disorder in endothelial cells. Redox Biol. 2021;46:102120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liang G, Wang S, Shao J, Jin YJ, Xu L, Yan Y, et al. Tenascin-x mediates flow-induced suppression of endmt and atherosclerosis. Circ Res. 2022;130:1647–59.

    Article  CAS  PubMed  Google Scholar 

  13. Woo KV, Shen IY, Weinheimer CJ, Kovacs A, Nigro J, Lin CY, et al. Endothelial fgf signaling is protective in hypoxia-induced pulmonary hypertension. J Clin Invest. 2021;131:e141467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chang CJ, Lai YJ, Tung YC, Wu LS, Hsu LA, Tseng CN, et al. Osteopontin mediation of disturbed flow-induced endothelial mesenchymal transition through cd44 is a novel mechanism of neointimal hyperplasia in arteriovenous fistulae for hemodialysis access. Kidney Int. 2023;103:702–18.

    Article  CAS  PubMed  Google Scholar 

  15. Xiong J. To be endmt or not to be, that is the question in pulmonary hypertension. Protein Cell. 2015;6:547–50.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tang RN, Lv LL, Zhang JD, Dai HY, Li Q, Zheng M, et al. Effects of angiotensin ii receptor blocker on myocardial endothelial-to-mesenchymal transition in diabetic rats. Int J Cardiol. 2013;162:92–99.

    Article  PubMed  Google Scholar 

  17. Lin K, Luo W, Yan J, Shen S, Shen Q, Wang J, et al. Tlr2 regulates angiotensin ii-induced vascular remodeling and endmt through nf-κb signaling. Aging. 2020;13:2553–74.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Souilhol C, Harmsen MC, Evans PC, Krenning G. Endothelial-mesenchymal transition in atherosclerosis. Cardiovasc Res. 2018;114:565–77.

    Article  CAS  PubMed  Google Scholar 

  19. Piera-Velazquez S, Jimenez SA. Endothelial to mesenchymal transition: Role in physiology and in the pathogenesis of human diseases. Physiol Rev. 2019;99:1281–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cai C, Tang YD, Zhai J, Zheng C. The ring finger protein family in health and disease. Signal Transduct Target Ther. 2022;7:300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ye B, Zhou H, Chen Y, Luo W, Lin W, Zhao Y, et al. Usp25 ameliorates pathological cardiac hypertrophy by stabilizing serca2a in cardiomyocytes. Circ Res. 2023;132:465–80.

    Article  CAS  PubMed  Google Scholar 

  22. Ernst R, Mueller B, Ploegh HL, Schlieker C. The otubain yod1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the er. Mol Cell. 2009;36:28–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han Z, Jia Q, Zhang J, Chen M, Wang L, Tong K, et al. Deubiquitylase yod1 regulates cdk1 stability and drives triple-negative breast cancer tumorigenesis. J Exp Clin Cancer Res. 2023;42:228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shao X, Chen Y, Wang W, Du W, Zhang X, Cai M, et al. Blockade of deubiquitinase yod1 degrades oncogenic pml/rarα and eradicates acute promyelocytic leukemia cells. Acta Pharm Sin B. 2022;12:1856–70.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Zhao W, Li Y, Li Y, Cheng H, Zheng L, et al. Yod1 serves as a potential prognostic biomarker for pancreatic cancer. Cancer Cell Int. 2022;22:203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang JM, Chen AF, Zhang K. Isolation and primary culture of mouse aortic endothelial cells. J Vis Exp. 2016;118:52965.

    Google Scholar 

  27. Tripathi M, Singh BK, Liehn EA, Lim SY, Tikno K, Castano-Mayan D, et al. Caffeine prevents restenosis and inhibits vascular smooth muscle cell proliferation through the induction of autophagy. Autophagy. 2022;18:2150–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rusanov AL, Kozhin PM, Tikhonova OV, Zgoda VG, Loginov DS, Chlastáková A, et al. Proteome profiling of pmj2-r and primary peritoneal macrophages. Int J Mol Sci. 2021;22:6323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen J, Zhuang R, Cheng HS, Jamaiyar A, Assa C, McCoy M, et al. Isolation and culture of murine aortic cells and rna isolation of aortic intima and media: Rapid and optimized approaches for atherosclerosis research. Atherosclerosis. 2022;347:39–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang L, Dai R, Wu H, Cai Z, Xie N, Zhang X, et al. Unspliced xbp1 counteracts β-catenin to inhibit vascular calcification. Circ Res. 2022;130:213–29.

    Article  CAS  PubMed  Google Scholar 

  31. Pang K, Park J, Ahn SG, Lee J, Park Y, Ooshima A, et al. Rnf208, an estrogen-inducible e3 ligase, targets soluble vimentin to suppress metastasis in triple-negative breast cancers. Nat Commun. 2019;10:5805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, et al. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting snail1 degradation. Nat Commun. 2017;8:14228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin X, Li AM, Li YH, Luo RC, Zou YJ, Liu YY, et al. Silencing myh9 blocks hbx-induced gsk3β ubiquitination and degradation to inhibit tumor stemness in hepatocellular carcinoma. Signal Transduct Target Ther. 2020;5:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nanes BA, Grimsley-Myers CM, Cadwell CM, Robinson BS, Lowery AM, Vincent PA, et al. P120-catenin regulates ve-cadherin endocytosis and degradation induced by the kaposi sarcoma-associated ubiquitin ligase k5. Mol Biol Cell. 2017;28:30–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang Z, Shen S, Wang M, Li W, Wu G, Huang W, et al. Mouse endothelial otud1 promotes angiotensin ii-induced vascular remodeling by deubiquitinating smad3. EMBO Rep. 2023;24:e56135.

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y, Chen Y, Ding C, Zhu X, Song X, Ren Y, et al. Trim56 positively regulates tnfα-induced nf-κb signaling by enhancing the ubiquitination of tak1. Int J Biol Macromol. 2022;219:571–8.

    Article  CAS  PubMed  Google Scholar 

  37. Mennerich D, Kubaichuk K, Kietzmann T. Dubs, hypoxia, and cancer. Trends Cancer. 2019;5:632–53.

    Article  CAS  PubMed  Google Scholar 

  38. Nandakumar P, Lee D, Richard MA, Tekola-Ayele F, Tayo BO, Ware E, et al. Rare coding variants associated with blood pressure variation in 15 914 individuals of african ancestry. J Hypertens. 2017;35:1381–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song IK, Kim HJ, Magesh V, Lee KJ. Ubiquitin c-terminal hydrolase-l1 plays a key role in angiogenesis by regulating hydrogen peroxide generated by nadph oxidase 4. Biochem Biophys Res Commun. 2018;495:1567–72.

    Article  CAS  PubMed  Google Scholar 

  40. He S, Zhong W, Yin L, Wang Y, Qiu Z, Song G. High expression of ubiquitin-specific peptidase 39 is associated with the development of vascular remodeling. Mol Med Rep. 2017;15:2567–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tanji K, Mori F, Miki Y, Utsumi J, Sasaki H, Kakita A, et al. Yod1 attenuates neurogenic proteotoxicity through its deubiquitinating activity. Neurobiol Dis. 2018;112:14–23.

    Article  CAS  PubMed  Google Scholar 

  42. Wang S, Wang Y, Wang S, Tong H, Tang Z, Wang J, et al. Long non-coding rna firre acts as a mir-520a-3p sponge to promote gallbladder cancer progression via mediating yod1 expression. Front Genet. 2021;12:674653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li Q, Sun H, Liu S, Tang J, Liu S, Yin P, et al. Ginsenoside rk1 inhibits hela cell proliferation through an endoplasmic reticulum signaling pathway. J Ginseng Res. 2023;47:645–53.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhu YM, Chen P, Shi L, Zhu T, Chen X. Mir-4429 suppresses the malignant development of ovarian cancer by targeting yod1. Eur Rev Med Pharm Sci. 2020;24:8722–30.

    Google Scholar 

  45. Han J, Shi X, Du Y, Shi F, Zhang B, Zheng Z, et al. Schisandrin c targets keap1 and attenuates oxidative stress by activating nrf2 pathway in ang ii-challenged vascular endothelium. Phytother Res. 2019;33:779–90.

    Article  CAS  PubMed  Google Scholar 

  46. Yang HY, Bian YF, Zhang HP, Gao F, Xiao CS, Liang B, et al. Angiotensin-(1-7) treatment ameliorates angiotensin ii-induced apoptosis of human umbilical vein endothelial cells. Clin Exp Pharmacol Physiol. 2012;39:1004–10.

    Article  CAS  PubMed  Google Scholar 

  47. Barhoumi T, Fraulob-Aquino JC, Mian MOR, Ouerd S, Idris-Khodja N, Huo KG, et al. Matrix metalloproteinase-2 knockout prevents angiotensin ii-induced vascular injury. Cardiovasc Res. 2017;113:1753–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. You S, Qian J, Wu G, Qian Y, Wang Z, Chen T, et al. Schizandrin b attenuates angiotensin ii induced endothelial to mesenchymal transition in vascular endothelium by suppressing nf-κb activation. Phytomedicine. 2019;62:152955.

    Article  CAS  PubMed  Google Scholar 

  49. Li L, Chen L, Zang J, Tang X, Liu Y, Zhang J, et al. C3a and c5a receptor antagonists ameliorate endothelial-myofibroblast transition via the wnt/β-catenin signaling pathway in diabetic kidney disease. Metabolism. 2015;64:597–610.

    Article  CAS  PubMed  Google Scholar 

  50. Zhu Y, Hart GW. Dual-specificity rna aptamers enable manipulation of target-specific o-glcnacylation and unveil functions of o-glcnac on β-catenin. Cell. 2023;186:428–45. e427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liang S, Zhou Z, Zhou Z, Liang J, Lin W, Zhang C, et al. Blockade of cbx4-mediated β-catenin sumoylation attenuates airway epithelial barrier dysfunction in asthma. Int Immunopharmacol. 2022;113:109333.

    Article  CAS  PubMed  Google Scholar 

  52. You H, Li Q, Kong D, Liu X, Kong F, Zheng K, et al. The interaction of canonical wnt/β-catenin signaling with protein lysine acetylation. Cell Mol Biol Lett. 2022;27:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen X, Wang C, Jiang Y, Wang Q, Tao Y, Zhang H, et al. Bcl-3 promotes wnt signaling by maintaining the acetylation of β-catenin at lysine 49 in colorectal cancer. Signal Transduct Target Ther. 2020;5:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dao KH, Rotelli MD, Petersen CL, Kaech S, Nelson WD, Yates JE, et al. Fancl ubiquitinates β-catenin and enhances its nuclear function. Blood. 2012;120:323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sabbineni H, Verma A, Artham S, Anderson D, Amaka O, Liu F, et al. Pharmacological inhibition of β-catenin prevents endmt in vitro and vascular remodeling in vivo resulting from endothelial akt1 suppression. Biochem Pharmacol. 2019;164:205–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huo YB, Gao X, Peng Q, Nie Q, Bi W. Dihydroartemisinin alleviates angii-induced vascular smooth muscle cell proliferation and inflammatory response by blocking the fto/nr4a3 axis. Inflamm Res. 2022;71:243–53.

    Article  CAS  PubMed  Google Scholar 

  57. Kröller-Schön S, Jansen T, Tran TLP, Kvandová M, Kalinovic S, Oelze M, et al. Endothelial α1ampk modulates angiotensin ii-mediated vascular inflammation and dysfunction. Basic Res Cardiol. 2019;114:8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Meng-xin Zhang, Wen-ting Wang and Jian-song Lin from the Scientific Research Center of Wenzhou Medical University for their help in immunofluorescence experiment. This study was supported by the National Natural Science Foundation of China (82271347 to GJW) and the Major project of Wenzhou Science and Technology Bureau (ZY2020016 to GJW).

Author information

Authors and Affiliations

Authors

Contributions

GL, WJH, and BZY contributed to the literature search and study design. WTL, YCJ, YLM, YHC, ZZZ, XH carried out the experiments. BZY contributed to data collection and analysis. WTL, BZY, and GJW participated in the drafting of the article. GL and WJH revised the manuscript.

Corresponding authors

Correspondence to Wei-jian Huang, Bo-zhi Ye or Guang Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Wt., Jiang, Yc., Mei, Yl. et al. Endothelial deubiquinatase YOD1 mediates Ang II-induced vascular endothelial-mesenchymal transition and remodeling by regulating β-catenin. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01278-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01278-9

Keywords

Search

Quick links