Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of USP7 enhances CD8+ T cell activity in liver cancer by suppressing PRDM1-mediated FGL1 upregulation

Abstract

Lymphocyte activation gene 3 (LAG3), an immune checkpoint molecule expressed on activated T cells, functions as a negative regulator of immune responses. Persistent antigen exposure in the tumor microenvironment results in sustained LAG3 expression on T cells, contributing to T cell dysfunction. Fibrinogen-like protein 1 (FGL1) has been identified as a major ligand of LAG3, and FGL1/LAG3 interaction forms a novel immune checkpoint pathway that results in tumor immune evasion. In addition, ubiquitin-specific peptidase 7 (USP7) plays a crucial role in cancer development. In this study we investigated the role of USP7 in modulation of FGL1-mediated liver cancer immune evasion. We showed that knockdown of USP7 or treatment with USP7 inhibitor P5091 suppressed liver cancer growth by promoting CD8+ T cell activity in Hepa1-6 xenograft mice and in HepG2 or Huh7 cells co-cultured with T cells, whereas USP7 overexpression produced the opposite effect. We found that USP7 upregulated FGL1 in HepG2 and Huh7 cells by deubiquitination of transcriptional factor PR domain zinc finger protein 1 (PRDM1), which transcriptionally activated FGL1, and attenuated the CD8+ T cell activity, leading to the liver cancer growth. Interestingly, USP7 could be transcriptionally stimulated by PRDM1 as well in a positive feedback loop. P5091, an inhibitor of USP7, was able to downregulate FGL1 expression, thus enhancing CD8+ T cell activity. In an immunocompetent liver cancer mouse model, the dual blockade of USP7 and LAG3 resulted in a superior antitumor activity compared with anti-LAG3 therapy alone. We conclude that USP7 diminishes CD8+ T cell activity by a USP7/PRDM1 positive feedback loop on FGL1 production in liver cancer; USP7 might be a promising target for liver cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inhibition of USP7 limits tumor growth via promoting CD8+ T cell activity in vivo and in vitro.
Fig. 2: USP7 attenuates CD8+ T cell activity by upregulating FGL1 in liver cancer.
Fig. 3: Activated transcription of FGL1 by PRDM1 attenuates anti-tumor immunity.
Fig. 4: USP7 interacts with PRDM1 to promote its deubiquitination and stabilization.
Fig. 5: PRDM1 transcriptionally activates USP7 in liver cancer.
Fig. 6: USP7-elevated PRDM1 inhibits CD8+ T cell activation via modulating FGL1.
Fig. 7: USP7 inhibition enhances the sensitivity of LAG3 mAb in immunotherapy of liver cancer.
Fig. 8: Inhibition of USP7 triggers the CD8+ T cell activity by modulating transcriptional factor PRDM1 to block FGL1 in liver cancer.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24:1550–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gao M, Qi Z, Deng M, Huang H, Xu Z, Guo G, et al. The deubiquitinase USP7 regulates oxidative stress through the stabilization of HO-1. Oncogene. 2022;41:4018–27.

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Dai Y, Ge H, Guo S, Zhang W, Wang Y, et al. The deubiquitinase USP7 promotes HNSCC progression via deubiquitinating and stabilizing TAZ. Cell Death Dis. 2022;13:677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. An T, Gong Y, Li X, Kong L, Ma P, Gong L, et al. USP7 inhibitor P5091 inhibits Wnt signaling and colorectal tumor growth. Biochem Pharmacol. 2017;131:29–39.

    Article  CAS  PubMed  Google Scholar 

  6. Fan YH, Cheng J, Vasudevan SA, Dou J, Zhang H, Patel RH, et al. USP7 inhibitor P22077 inhibits neuroblastoma growth via inducing p53-mediated apoptosis. Cell Death Dis. 2013;4:e867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Masuya D, Huang C, Liu D, Nakashima T, Yokomise H, Ueno M, et al. The HAUSP gene plays an important role in non-small cell lung carcinogenesis through p53-dependent pathways. J Pathol. 2006;208:724–32.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Z, Kang W, Li O, Qi F, Wang J, You Y, et al. Abrogation of USP7 is an alternative strategy to downregulate PD-L1 and sensitize gastric cancer cells to T cells killing. Acta Pharm Sin B. 2021;11:694–707.

    Article  CAS  PubMed  Google Scholar 

  9. Dai X, Lu L, Deng S, Meng J, Wan C, Huang J, et al. USP7 targeting modulates anti-tumor immune response by reprogramming tumor-associated macrophages in lung cancer. Theranostics. 2020;10:9332–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu H, Han J, Lv Y, Zhao Z, Zheng S, Sun Y, et al. Isorhamnetin and anti-PD-L1 antibody dual-functional mesoporous silica nanoparticles improve tumor immune microenvironment and inhibit YY1-mediated tumor progression. J Nanobiotechnol. 2023;21:208.

    Article  Google Scholar 

  11. Hoos A. Development of immuno-oncology drugs - from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov. 2016;15:235–47.

    Article  CAS  PubMed  Google Scholar 

  12. Janjigian YY, Shitara K, Moehler M, Garrido M, Salman P, Shen L, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet. 2021;398:27–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cortes J, Rugo HS, Cescon DW, Im SA, Yusof MM, Gallardo C, et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. N Engl J Med. 2022;387:217–26.

    Article  CAS  PubMed  Google Scholar 

  14. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Maalej KM, Merhi M, Inchakalody VP, Mestiri S, Alam M, Maccalli C, et al. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer. 2023;22:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng AL, Hsu C, Chan SL, Choo SP, Kudo M. Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma. J Hepatol. 2020;72:307–19.

    Article  CAS  PubMed  Google Scholar 

  17. Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2015;12:681–700.

    Article  CAS  PubMed  Google Scholar 

  18. Sangro B, Gomez-Martin C, de la Mata M, Inarrairaegui M, Garralda E, Barrera P, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59:81–8.

    Article  CAS  PubMed  Google Scholar 

  19. Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC, Moretta L. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol. 2019;16:430–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang Z, Sun H, Yu J, Tian W, Song Y. Targeting CD47 for cancer immunotherapy. J Hematol Oncol. 2021;14:180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Andrews LP, Cillo AR, Karapetyan L, Kirkwood JM, Workman CJ, Vignali DAA. Molecular pathways and mechanisms of LAG3 in cancer therapy. Clin Cancer Res. 2022;28:5030–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Andrews LP, Marciscano AE, Drake CG, Vignali DA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017;276:80–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer. 2019;18:155.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ruffo E, Wu RC, Bruno TC, Workman CJ, Vignali DAA. Lymphocyte-activation gene 3 (LAG3): the next immune checkpoint receptor. Semin Immunol. 2019;42:101305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44:989–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72:917–27.

    Article  CAS  PubMed  Google Scholar 

  27. Li CY, Cao CZ, Xu WX, Cao MM, Yang F, Dong L, et al. Recombinant human hepassocin stimulates proliferation of hepatocytes in vivo and improves survival in rats with fulminant hepatic failure. Gut. 2010;59:817–26.

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, Sanmamed MF, Datar I, Su TT, Ji L, Sun J, et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell. 2019;176:334–47. e12

    Article  CAS  PubMed  Google Scholar 

  29. Qian W, Zhao M, Wang R, Li H. Fibrinogen-like protein 1 (FGL1): the next immune checkpoint target. J Hematol Oncol. 2021;14:147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arar NM, Pati P, Kashyap A, Khartchenko AF, Goksel O, Kaigala GV, et al. High-quality immunohistochemical stains through computational assay parameter optimization. IEEE Trans Biomed Eng. 2019;66:2952–63.

    Article  PubMed  Google Scholar 

  31. Yuan H, Zhao L, Yuan Y, Yun H, Zheng W, Geng Y, et al. HBx represses WDR77 to enhance HBV replication by DDB1-mediated WDR77 degradation in the liver. Theranostics. 2021;11:8362–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Zhao M, Zhao L, Geng Y, Li G, Chen L, et al. HBx-induced HSPA8 stimulates HBV replication and suppresses ferroptosis to support liver cancer progression. Cancer Res. 2023;83:1048–61.

    Article  CAS  PubMed  Google Scholar 

  33. Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989;24:148–54.

    Article  CAS  PubMed  Google Scholar 

  34. Loo Yau H, Bell E, Ettayebi I, de Almeida FC, Boukhaled GM, Shen SY, et al. DNA hypomethylating agents increase activation and cytolytic activity of CD8+ T cells. Mol Cell. 2021;81:1469–83.e8.

    Article  CAS  PubMed  Google Scholar 

  35. Xiang J, Zhang N, Sun H, Su L, Zhang C, Xu H, et al. Disruption of SIRT7 increases the efficacy of checkpoint inhibitor via MEF2D regulation of programmed cell death 1 ligand 1 in hepatocellular carcinoma cells. Gastroenterology. 2020;158:664–78. e24

    Article  CAS  PubMed  Google Scholar 

  36. Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Lemma RB, Turchi L, Blanc-Mathieu R, et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2022;50:D165–D73.

    Article  CAS  PubMed  Google Scholar 

  37. Wang WF, Yan L, Liu Z, Liu LX, Lin J, Liu ZY, et al. HSP70-Hrd1 axis precludes the oncorepressor potential of N-terminal misfolded Blimp-1s in lymphoma cells. Nat Commun. 2017;8:363.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kategaya L, Di Lello P, Rouge L, Pastor R, Clark KR, Drummond J, et al. USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature. 2017;550:534–8.

    Article  CAS  PubMed  Google Scholar 

  39. Lichtenegger FS, Rothe M, Schnorfeil FM, Deiser K, Krupka C, Augsberger C, et al. Targeting LAG-3 and PD-1 to enhance T cell activation by antigen-presenting cells. Front Immunol. 2018;9:385.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gao H, Yin J, Ji C, Yu X, Xue J, Guan X, et al. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application. J Exp Clin Cancer Res. 2023;42:225.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–30.

    Article  CAS  PubMed  Google Scholar 

  42. Berglund A, Putney RM, Hamaidi I, Kim S. Epigenetic dysregulation of immune-related pathways in cancer: bioinformatics tools and visualization. Exp Mol Med. 2021;53:761–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35:S185–S98. Suppl

    Article  PubMed  Google Scholar 

  44. Huang YT, Cheng AC, Tang HC, Huang GC, Cai L, Lin TH, et al. USP7 facilitates SMAD3 autoregulation to repress cancer progression in P53-deficient lung cancer. Cell Death Dis. 2021;12:880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saha G, Roy S, Basu M, Ghosh MK. USP7—a crucial regulator of cancer hallmarks. Biochim Biophys Acta Rev Cancer. 2023;1878:188903.

    Article  CAS  PubMed  Google Scholar 

  46. Bian S, Ni W, Zhu M, Zhang X, Qiang Y, Zhang J, et al. Flap endonuclease 1 facilitated hepatocellular carcinoma progression by enhancing USP7/MDM2-mediated P53 inactivation. Int J Biol Sci. 2022;18:1022–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pei Y, Fu J, Shi Y, Zhang M, Luo G, Luo X, et al. Discovery of a potent and selective degrader for USP7. Angew Chem Int Ed Engl. 2022;61:e202204395.

    Article  CAS  PubMed  Google Scholar 

  48. Park SH, Fong KW, Kim J, Wang F, Lu X, Lee Y, et al. Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. Sci Adv. 2021;7:eabe2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang J, Huang D, Saw PE, Song E. Turning cold tumors hot: from molecular mechanisms to clinical applications. Trends Immunol. 2022;43:523–45.

    Article  CAS  PubMed  Google Scholar 

  50. Li Q, Zhang L, You W, Xu J, Dai J, Hua D, et al. PRDM1/BLIMP1 induces cancer immune evasion by modulating the USP22-SPI1-PD-L1 axis in hepatocellular carcinoma cells. Nat Commun. 2022;13:7677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Du H, Yi Z, Wang L, Li Z, Niu B, Ren G. The co-expression characteristics of LAG3 and PD-1 on the T cells of patients with breast cancer reveal a new therapeutic strategy. Int Immunopharmacol. 2020;78:106113.

    Article  CAS  PubMed  Google Scholar 

  52. Guo M, Yuan F, Qi F, Sun J, Rao Q, Zhao Z, et al. Expression and clinical significance of LAG- 3, FGL1, PD-L1 and CD8+ T cells in hepatocellular carcinoma using multiplex quantitative analysis. J Transl Med. 2020;18:306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Tianjin Science and Technology Committee (19YFZCSY00020), the National Natural Science Foundation of China (82372818 to XDZ, 82103066 to GY; 82302887 to HFY; 82303210 to YFW), the China Postdoctoral Science Foundation (2022M712389 to HFY; 2023M742621 to LNZ; 2023M732624 to YFW), Tianjin Key Medical Discipline (Specialty) Construction Project (TJYXZDXK-009A to WL), and “14th Five-Year Plan” Tumor Prevention and Treatment Research Project of Tianjin Medical University Cancer Institute and Hospital (No. YZ-03).

Author information

Authors and Affiliations

Authors

Contributions

LLS performed most of the experiments; LNZ, JS, HHZ, and PL accomplished some of the in vitro and in vivo experiments; YFW, HFY, and CYH accomplished some RNA-seq analysis; WL, XDZ, NNZ, and GY conceived and designed the project; LLS and XDZ wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guang Yang, Ning-ning Zhang, Xiao-dong Zhang or Wei Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Ll., Zhao, Ln., Sun, J. et al. Inhibition of USP7 enhances CD8+ T cell activity in liver cancer by suppressing PRDM1-mediated FGL1 upregulation. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01263-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01263-2

Keywords

Search

Quick links