Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decreasing mitochondrial fission ameliorates HIF-1α-dependent pathological retinal angiogenesis

Abstract

Angiogenesis plays a critical role in many pathological processes, including irreversible blindness in eye diseases such as retinopathy of prematurity. Endothelial mitochondria are dynamic organelles that undergo constant fusion and fission and are critical signalling hubs that modulate angiogenesis by coordinating reactive oxygen species (ROS) production and calcium signalling and metabolism. In this study, we investigated the role of mitochondrial dynamics in pathological retinal angiogenesis. We showed that treatment with vascular endothelial growth factor (VEGF; 20 ng/ml) induced mitochondrial fission in HUVECs by promoting the phosphorylation of dynamin-related protein 1 (DRP1). DRP1 knockdown or pretreatment with the DRP1 inhibitor Mdivi-1 (5 μM) blocked VEGF-induced cell migration, proliferation, and tube formation in HUVECs. We demonstrated that VEGF treatment increased mitochondrial ROS production in HUVECs, which was necessary for HIF-1α-dependent glycolysis, as well as proliferation, migration, and tube formation, and the inhibition of mitochondrial fission prevented VEGF-induced mitochondrial ROS production. In an oxygen-induced retinopathy (OIR) mouse model, we found that active DRP1 was highly expressed in endothelial cells in neovascular tufts. The administration of Mdivi-1 (10 mg·kg−1·d−1, i.p.) for three days from postnatal day (P) 13 until P15 significantly alleviated pathological angiogenesis in the retina. Our results suggest that targeting mitochondrial fission may be a therapeutic strategy for proliferative retinopathies and other diseases that are dependent on pathological angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: VEGF induces mitochondrial fission in ECs.
Fig. 2: VEGF induces DRP1 phosphorylation and mitochondrial fission via ERK signalling.
Fig. 3: Mitochondrial fission is essential for VEGF-induced angiogenesis in vitro.
Fig. 4: Enhanced mitochondrial fission is involved in VEGF-induced ROS production in ECs.
Fig. 5: Mitochondrial fission is essential for VEGF-induced upregulation of HIF-1α-dependent glycolysis in ECs.
Fig. 6: Inhibition of mitochondrial ROS decreases HIF-1α-dependent glycolysis and angiogenesis in ECs.
Fig. 7: Inhibition of DRP1 improves retinal pathological angiogenesis.

Similar content being viewed by others

References

  1. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–60.

    Article  CAS  PubMed  Google Scholar 

  2. Penn JS, Madan A, Caldwell RB, Bartoli M, Caldwell RW, Hartnett ME. Vascular endothelial growth factor in eye disease. Prog Retin Eye Res. 2008;27:331–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Horowitz A, Simons M. Branching morphogenesis. Circ Res. 2008;103:784–95.

    Article  CAS  PubMed  Google Scholar 

  4. Carmeliet P, Tessier-Lavigne M. Common mechanisms of nerve and blood vessel wiring. Nature. 2005;436:193–200.

    Article  CAS  PubMed  Google Scholar 

  5. De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154:651–63.

    Article  PubMed  Google Scholar 

  6. Xu Y, An X, Guo X, Habtetsion TG, Wang Y, Xu X, et al. Endothelial PFKFB3 plays a critical role in angiogenesis. Arterioscler Thromb Vasc Biol. 2014;34:1231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yoshida T, Zhang H, Iwase T, Shen J, Semenza GL, Campochiaro PA. Digoxin inhibits retinal ischemia-induced HIF-1alpha expression and ocular neovascularization. FASEB J. 2010;24:1759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ren L, Han F, Xuan L, Lv Y, Gong L, Yan Y, et al. Clusterin ameliorates endothelial dysfunction in diabetes by suppressing mitochondrial fragmentation. Free Radic Biol Med. 2019;145:357–73.

    Article  CAS  PubMed  Google Scholar 

  9. Shen T, Wang N, Yu X, Shi J, Li Q, Zhang C, et al. The Critical Role of Dynamin-Related Protein 1 in Hypoxia-Induced Pulmonary Vascular Angiogenesis. J Cell Biochem. 2015;116:1993–2007.

    Article  CAS  PubMed  Google Scholar 

  10. Trudeau K, Molina AJ, Guo W, Roy S. High glucose disrupts mitochondrial morphology in retinal endothelial cells: implications for diabetic retinopathy. Am J Pathol. 2010;177:447–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010;11:872–84.

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Yu T, Lee H, O’Brien DK, Sesaki H, Yoon Y. Decreasing mitochondrial fission diminishes vascular smooth muscle cell migration and ameliorates intimal hyperplasia. Cardiovasc Res. 2015;106:272–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hall AR, Burke N, Dongworth RK, Hausenloy DJ. Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. Br J Pharmacol. 2014;171:1890–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang LT, He PC, Li AQ, Cao KX, Yan JW, Guo S, et al. Caffeine promotes angiogenesis through modulating endothelial mitochondrial dynamics. Acta Pharmacol Sin. 2021;42:2033–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, Yano M, et al. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes. 2006;55:120–7.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang B, Davidson MM, Zhou H, Wang C, Walker WF, Hei TK. Cytoplasmic irradiation results in mitochondrial dysfunction and DRP1-dependent mitochondrial fission. Cancer Res. 2013;73:6700–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guido C, Whitaker-Menezes D, Lin Z, Pestell RG, Howell A, Zimmers TA, et al. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth. Oncotarget. 2012;3:798–810.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1:401–8.

    Article  CAS  PubMed  Google Scholar 

  19. Smirnova E, Griparic L, Shurland DL, van der Bliek AM. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 2001;12:2245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL, Hoehn KL, et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell. 2015;57:537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu J, Liu X, Jiang Y, Chu L, Hao H, Liua Z, et al. MAPK/ERK signalling mediates VEGF-induced bone marrow stem cell differentiation into endothelial cell. J Cell Mol Med. 2008;12:2395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997;416:15–8.

    Article  CAS  PubMed  Google Scholar 

  23. Starkov AA, Fiskum G. Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem. 2003;86:1101–7.

    Article  CAS  PubMed  Google Scholar 

  24. Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. 2002;277:23111–5.

    Article  CAS  PubMed  Google Scholar 

  25. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292:464–8.

    Article  CAS  PubMed  Google Scholar 

  26. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–72.

    Article  CAS  PubMed  Google Scholar 

  27. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013;1833:3448–59.

    Article  CAS  PubMed  Google Scholar 

  28. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16:R551–60.

    Article  CAS  PubMed  Google Scholar 

  29. Kamer KJ, Mootha VK. The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol. 2015;16:545–53.

    Article  CAS  PubMed  Google Scholar 

  30. Yapa NMB, Lisnyak V, Reljic B, Ryan MT. Mitochondrial dynamics in health and disease. FEBS Lett. 2021;595:1184–204.

    Article  CAS  PubMed  Google Scholar 

  31. Salabei JK, Hill BG. Mitochondrial fission induced by platelet-derived growth factor regulates vascular smooth muscle cell bioenergetics and cell proliferation. Redox Biol. 2013;1:542–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen KH, Dasgupta A, Lin J, Potus F, Bonnet S, Iremonger J, et al. Epigenetic dysregulation of the dynamin-related protein 1 binding partners MiD49 and MiD51 increases mitotic mitochondrial fission and promotes pulmonary arterial hypertension: mechanistic and therapeutic implications. Circulation. 2018;138:287–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ryan J, Dasgupta A, Huston J, Chen KH, Archer SL. Mitochondrial dynamics in pulmonary arterial hypertension. J Mol Med (Berl). 2015;93:229–42.

    Article  CAS  PubMed  Google Scholar 

  34. Kleele T, Rey T, Winter J, Zaganelli S, Mahecic D, Perreten Lambert H, et al. Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature. 2021;593:435–9.

    Article  CAS  PubMed  Google Scholar 

  35. Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem. 2007;282:11521–9.

    Article  CAS  PubMed  Google Scholar 

  36. Saito T, Nah J, Oka SI, Mukai R, Monden Y, Maejima Y, et al. An alternative mitophagy pathway mediated by Rab9 protects the heart against ischemia. J Clin Invest. 2019;129:802–19.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xu S, Wang P, Zhang H, Gong G, Gutierrez Cortes N, Zhu W, et al. CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation. Nat Commun. 2016;7:13189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci USA. 2008;105:15803–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bhattacharya R, Kwon J, Li X, Wang E, Patra S, Bida JP, et al. Distinct role of PLCbeta3 in VEGF-mediated directional migration and vascular sprouting. J Cell Sci. 2009;122:1025–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci. 2012;322:254–62.

    Article  CAS  PubMed  Google Scholar 

  41. Delierneux C, Kouba S, Shanmughapriya S, Potier-Cartereau M, Trebak M, Hempel N. Mitochondrial calcium regulation of redox signalling in cancer. Cells. 2020;9:432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084.

    Article  CAS  PubMed  Google Scholar 

  43. Kim YW, Byzova TV. Oxidative stress in angiogenesis and vascular disease. Blood. 2014;123:625–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ushio-Fukai M, Tang Y, Fukai T, Dikalov SI, Ma Y, Fujimoto M, et al. Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signalling and angiogenesis. Circ Res. 2002;91:1160–7.

    Article  CAS  PubMed  Google Scholar 

  45. Ikeda S, Ushio-Fukai M, Zuo L, Tojo T, Dikalov S, Patrushev NA, et al. Novel role of ARF6 in vascular endothelial growth factor-induced signalling and angiogenesis. Circ Res. 2005;96:467–75.

    Article  CAS  PubMed  Google Scholar 

  46. Fukai T, Ushio-Fukai M. Cross-Talk between NADPH oxidase and mitochondria: role in ROS signalling and angiogenesis. Cells. 2020;9:1849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zimna A, Kurpisz M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int. 2015;2015:549412.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ding M, Feng N, Tang D, Feng J, Li Z, Jia M, et al. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway. J Pineal Res. 2018;65:e12491.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Key R&D Program of China (2022YFC3500400, 2022YFC3500405, and 2019YFE0119400), the National Natural Science Foundation of China (82270433 and 81870217), Guangdong Basic and Applied Basic Research Foundation (2023A1515011411), Rural Science and Technology Commissioner Project of Guangdong Provincial Science and Technology Department (KTPYJ2021026), and the open research funds from the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital (202201-209).

Author information

Authors and Affiliations

Authors

Contributions

YMX and SQH designed the research; SQH, KXC, QWL, YXC, CLW, PLC, YTZ, SHY, ZXB, SG and MXL performed the research; SQH, QWL, YXC, CLW, PLC, YTZ, SHY, ZXB, MXL, GQZ and JH analyzed the data; and YMX, JH, GQZ, QWL and SQH wrote the manuscript.

Corresponding authors

Correspondence to Guo-qi Zhang, Jun He or Yi-ming Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Sq., Cao, Kx., Wang, Cl. et al. Decreasing mitochondrial fission ameliorates HIF-1α-dependent pathological retinal angiogenesis. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01262-3

Keywords

Search

Quick links