Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exosomes derived from induced cardiopulmonary progenitor cells alleviate acute lung injury in mice

Abstract

Cardiopulmonary progenitor cells (CPPs) constitute a minor subpopulation of cells that are commonly associated with heart and lung morphogenesis during embryonic development but completely subside after birth. This fact offers the possibility for the treatment of pulmonary heart disease (PHD), in which the lung and heart are both damaged. A reliable source of CPPs is urgently needed. In this study, we reprogrammed human cardiac fibroblasts (HCFs) into CPP-like cells (or induced CPPs, iCPPs) and evaluated the therapeutic potential of iCPP-derived exosomes for acute lung injury (ALI). iCPPs were created in passage 3 primary HCFs by overexpressing GLI1, WNT2, ISL1 and TBX5 (GWIT). Exosomes were isolated from the culture medium of passage 6–8 GWIT-iCPPs. A mouse ALI model was established by intratracheal instillation of LPS. Four hours after LPS instillation, ALI mice were treated with GWIT-iCPP-derived exosomes (5 × 109, 5 × 1010 particles/mL) via intratracheal instillation. We showed that GWIT-iCPPs could differentiate into cell lineages, such as cardiomyocyte-like cells, endothelial cells, smooth muscle cells and alveolar epithelial cells, in vitro. Transcription analysis revealed that GWIT-iCPPs have potential for heart and lung development. Intratracheal instillation of iCPP-derived exosomes dose-dependently alleviated LPS-induced ALI in mice by attenuating lung inflammation, promoting endothelial function and restoring capillary endothelial cells and the epithelial cells barrier. This study provides a potential new method for the prevention and treatment of cardiopulmonary injury, especially lung injury, and provides a new cell model for drug screening.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hypothesis-Driven screening and characterization of GWIT-iCPPs.
Fig. 2: GWIT-iCPPs could differentiate into iCMs, ECs, SMCs and AECs in vitro.
Fig. 3: Transcriptional signatures of iCPPs.
Fig. 4: iCPPs-derived exosomes mitigate LPS-induced acute lung injury.
Fig. 5: iCPPs-derived exosomes decreased lung inflammation and restored cell barrier.
Fig. 6: iCPPs-derived exosomes promoted EC function and restored epithelial cell barrier.
Fig. 7: Diagram of how iCPPs alleviate LPS-induced acute lung injury and the underlying mechanism.

Similar content being viewed by others

References

  1. Forfia PR, Vaidya A, Wiegers SE. Pulmonary heart disease: The heart-lung interaction and its impact on patient phenotypes. Pulm Circ. 2013;3:5–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agusti A, Hogg JC. Update on the pathogenesis of chronic obstructive pulmonary disease. N Engl J Med. 2019;381:1248–56.

    Article  CAS  PubMed  Google Scholar 

  3. Qi H, Liu H, Pullamsetti SS, Gunther S, Kuenne C, Atzberger A, et al. Epigenetic regulation by Suv4-20h1 in cardiopulmonary progenitor cells is required to prevent pulmonary hypertension and chronic obstructive pulmonary disease. Circulation. 2021;144:1042–58.

    Article  CAS  PubMed  Google Scholar 

  4. Hoang T, Wang J, Boyd P, Wang F, Santiago C, Jiang L, et al. Gene regulatory networks controlling vertebrate retinal regeneration. Science. 2020;370:eabb8598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jorstad NL, Wilken MS, Grimes WN, Wohl SG, VandenBosch LS, Yoshimatsu T, et al. Stimulation of functional neuronal regeneration from Muller glia in adult mice. Nature. 2017;548:103–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang JL, Jiang XY, Zhao LX, Zuo SJ, Chen XT, Zhang LM, et al. Lineage reprogramming of fibroblasts into induced cardiac progenitor cells by CRISPR/Cas9-based transcriptional activators. Acta Pharm Sin B. 2020;10:313–26.

    Article  PubMed  Google Scholar 

  7. Lalit PA, Salick MR, Nelson DO, Squirrell JM, Shafer CM, Patel NG, et al. Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors. Cell Stem Cell. 2016;18:354–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y, Cao N, Huang Y, Spencer CI, Fu JD, Yu C, et al. Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Cell Stem Cell. 2016;18:368–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14:561–74.

    Article  CAS  PubMed  Google Scholar 

  10. Peng T, Tian Y, Boogerd CJ, Lu MM, Kadzik RS, Stewart KM, et al. Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor. Nature. 2013;500:589–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Steimle JD, Rankin SA, Slagle CE, Bekeny J, Rydeen AB, Chan SS, et al. Evolutionarily conserved Tbx5-Wnt2/2b pathway orchestrates cardiopulmonary development. Proc Natl Acad Sci USA. 2018;115:E10615–E24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liang S, Li HC, Wang YX, Wu SS, Cai YJ, Cui HL, et al. Pulmonary endoderm, second heart field and the morphogenesis of distal outflow tract in mouse embryonic heart. Dev Growth Differ. 2014;56:276–92.

    Article  CAS  PubMed  Google Scholar 

  13. Hatzistergos KE, Durante MA, Valasaki K, Wanschel A, Harbour JW, Hare JM. A novel cardiomyogenic role for Isl1+ neural crest cells in the inflow tract. Sci Adv. 2020;6:eaba9950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou L, Liu J, Xiang M, Olson P, Guzzetta A, Zhang K, et al. Gata4 potentiates second heart field proliferation and Hedgehog signaling for cardiac septation. Proc Natl Acad Sci USA. 2017;114:E1422–E31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang C, Li Y, Cao J, Yu B, Zhang K, Li K, et al. Hedgehog signalling controls sinoatrial node development and atrioventricular cushion formation. Open Biol. 2021;11:210020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hrycaj SM, Dye BR, Baker NC, Larsen BM, Burke AC, Spence JR, et al. Hox5 genes regulate the Wnt2/2b-Bmp4-signaling axis during lung development. Cell Rep. 2015;12:903–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arora R, Metzger RJ, Papaioannou VE. Multiple roles and interactions of Tbx4 and Tbx5 in development of the respiratory system. PLoS Genet. 2012;8:e1002866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rankin SA, Steimle JD, Yang XH, Rydeen AB, Agarwal K, Chaturvedi P, et al. Tbx5 drives Aldh1a2 expression to regulate a RA-Hedgehog-Wnt gene regulatory network coordinating cardiopulmonary development. Elife. 2021;10:e69288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818–24.

    Article  CAS  PubMed  Google Scholar 

  20. Favarin DC, de Oliveira JR, de Oliveira CJ, Rogerio Ade P. Potential effects of medicinal plants and secondary metabolites on acute lung injury. Biomed Res Int. 2013;2013:576479.

    PubMed  Google Scholar 

  21. Vahdat S, Pahlavan S, Mahmoudi E, Barekat M, Ansari H, Bakhshandeh B, et al. Expansion of human pluripotent stem cell-derived early cardiovascular progenitor cells by a cocktail of signaling factors. Sci Rep. 2019;9:16006.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ng WH, Johnston EK, Tan JJ, Bliley JM, Feinberg AW, Stolz DB, et al. Recapitulating human cardio-pulmonary co-development using simultaneous multilineage differentiation of pluripotent stem cells. Elife. 2022;11:e67872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ng WH, Varghese B, Ren X. Co-differentiation and co-maturation of human cardio-pulmonary progenitors and micro-tissues from human induced pluripotent stem cells. Bio Protoc. 2022;12:e4488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang L, Xu W, Shen A, Fu X, Cen H, Wang S, et al. Inhibition of YAP1 activity ameliorates acute lung injury through promotion of M2 macrophage polarization. MedComm (2020). 2023;4:e293.

    CAS  PubMed  Google Scholar 

  25. Zeng Z, Xia L, Fan X, Ostriker AC, Yarovinsky T, Su M, et al. Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair. J Clin Invest. 2019;129:1372–86.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Penalosa-Ruiz G, Bright AR, Mulder KW, Veenstra GJC. The interplay of chromatin and transcription factors during cell fate transitions in development and reprogramming. Biochim Biophys Acta Gene Regul Mech. 2019;1862:194407.

    Article  CAS  PubMed  Google Scholar 

  27. Steimle JD, Moskowitz IP. TBX5: A key regulator of heart development. Curr Top Dev Biol. 2017;122:195–221.

    Article  CAS  PubMed  Google Scholar 

  28. Li T, He Z, Zhang X, Tian M, Jiang K, Cheng G, et al. The status of MAPK cascades contributes to the induction and activation of Gata4 and Nkx2.5 during the stepwise process of cardiac differentiation. Cell Signal. 2019;54:17–26.

    Article  CAS  PubMed  Google Scholar 

  29. Jumppanen M, Kinnunen SM, Valimaki MJ, Talman V, Auno S, Bruun T, et al. Synthesis, identification, and structure-activity relationship analysis of GATA4 and NKX2-5 protein-protein interaction modulators. J Med Chem. 2019;62:8284–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Atkins MH, Scarfo R, McGrath KE, Yang D, Palis J, Ditadi A, et al. Modeling human yolk sac hematopoiesis with pluripotent stem cells. J Exp Med. 2022;219:e20211924.

    Article  CAS  PubMed  Google Scholar 

  31. Islas JF, Liu Y, Weng KC, Robertson MJ, Zhang S, Prejusa A, et al. Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci USA. 2012;109:13016–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ha DH, Kim HK, Lee J, Kwon HH, Park GH, Yang SH, et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells. 2020;9:1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xing Z, Zhao C, Liu H, Fan Y. Endothelial progenitor cell-derived extracellular vesicles: a novel candidate for regenerative medicine and disease treatment. Adv Health Mater. 2020;9:e2000255.

    Article  Google Scholar 

  34. Jung JH, Fu X, Yang PC. Exosomes generated from iPSC-derivatives: new direction for stem cell therapy in human heart diseases. Circ Res. 2017;120:407–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol. 2016;17:564–80.

    Article  CAS  PubMed  Google Scholar 

  36. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678–89.

    Article  CAS  PubMed  Google Scholar 

  37. Franchini M, Lippi G. Von Willebrand factor and thrombosis. Ann Hematol. 2006;85:415–23.

    Article  CAS  PubMed  Google Scholar 

  38. Horvath B, Hegedus D, Szapary L, Marton Z, Alexy T, Koltai K, et al. Measurement of von Willebrand factor as the marker of endothelial dysfunction in vascular diseases. Exp Clin Cardiol. 2004;9:31–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu H, Wang B, Jiang C, Li R, Zhao J. Endothelial progenitor cell-derived exosomes facilitate vascular endothelial cell repair through shuttling miR-21-5p to modulate Thrombospondin-1 expression. Clin Sci (Lond). 2019;133:1629–44.

    Article  CAS  PubMed  Google Scholar 

  40. Furuta T, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N, et al. Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model. Stem Cells Transl Med. 2016;5:1620–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma S, Meng Z, Chen R, Guan KL. The Hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88:577–604.

    Article  CAS  PubMed  Google Scholar 

  42. Tang W, Li M, Yangzhong X, Zhang X, Zu A, Hou Y, et al. Hippo signaling pathway and respiratory diseases. Cell Death Discov. 2022;8:213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abdurahman A, Li X, Li J, Liu D, Zhai L, Wang X, et al. Loading-driven PI3K/Akt signaling and erythropoiesis enhanced angiogenesis and osteogenesis in a postmenopausal osteoporosis mouse model. Bone. 2022;157:116346.

    Article  CAS  PubMed  Google Scholar 

  44. Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science. 2018;359:1118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nusse R, Clevers H. Wnt/beta-Catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.

    Article  CAS  PubMed  Google Scholar 

  46. Jia G, Preussner J, Chen X, Guenther S, Yuan X, Yekelchyk M, et al. Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat Commun. 2018;9:4877.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Buzhor E, Leshansky L, Blumenthal J, Barash H, Warshawsky D, Mazor Y, et al. Cell-based therapy approaches: the hope for incurable diseases. Regen Med. 2014;9:649–72.

    Article  CAS  PubMed  Google Scholar 

  48. Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 2020;27:523–31.

    Article  CAS  PubMed  Google Scholar 

  49. Dos Santos CC, Amatullah H, Vaswani CM, Maron-Gutierrez T, Kim M, Mei SHJ, et al. Mesenchymal stromal (stem) cell therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury. Eur Respir J. 2022;59:2004216.

    Article  PubMed  Google Scholar 

  50. Xiao K, He W, Guan W, Hou F, Yan P, Xu J, et al. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-kappaB and Hedgehog pathways in LPS-induced acute lung injury. Cell Death Dis. 2020;11:863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Chang E, et al. Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury. Crit Care. 2019;23:44.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhu J, Feng B, Xu Y, Chen W, Sheng X, Feng X, et al. Mesenchymal stem cells alleviate LPS-induced acute lung injury by inhibiting the proinflammatory function of Ly6C+CD8+ T cells. Cell Death Dis. 2020;11:829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu X, Liu Z, Hu L, Gu W, Zhu L. Exosomes derived from endothelial progenitor cells ameliorate acute lung injury by transferring miR-126. Exp Cell Res. 2018;370:13–23.

    Article  CAS  PubMed  Google Scholar 

  54. Zhao R, Wang L, Wang T, Xian P, Wang H, Long Q. Inhalation of MSC-EVs is a noninvasive strategy for ameliorating acute lung injury. J Control Rel. 2022;345:214–30.

    Article  CAS  Google Scholar 

  55. Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, O’Kane CM, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 2017;196:1275–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li H, Yao C, Shi K, Zhao Y, Du J, Hu D, et al. Astragaloside IV attenuates hypoxia/reoxygenation injury-induced apoptosis of type II alveolar epithelial cells through miR-21-5p. Bioengineered. 2021;12:7747–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. He Q, Ye A, Ye W, Liao X, Qin G, Xu Y, et al. Cancer-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by targeting KRIT1. Cell Death Dis. 2021;12:576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China under grant (2022YFE0209700 to Xi-yong Yu), Guangdong Provincial Drug Administration Science and Technology Innovation Project-Key Technology Research on Chest Disease Prevention and Treatment Drug Research and Clinical Evaluation (Grant NO. 2022ZDZ10 to Xi-yong Yu), the fellowship of China Postdoctoral Science Foundation (2022M710890 to YYX) and the Epigenetic Drug R&D and Cultivation Plan of the School of Pharmacy, Guangzhou Medical University (06-410-2107211 to YYX).

Author information

Authors and Affiliations

Authors

Contributions

LXX and XYY designed the experiments and wrote the paper. LXX and YYX performed the cell reprogram and cell differentiation. XYY and YYX revised the paper. WJJ and XYY performed the animal experiments. HT, SRM and JFQ performed experiments on cell lines. QRP and YGZ performed the ELISA experiments. LXZ, ZL and LJH analyzed the data.

Corresponding author

Correspondence to Xi-yong Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Lx., Xiao, Yy., Jiang, Wj. et al. Exosomes derived from induced cardiopulmonary progenitor cells alleviate acute lung injury in mice. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01253-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01253-4

Keywords

Search

Quick links