Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disfunction of dorsal raphe nucleus-hippocampus serotonergic-HTR3 transmission results in anxiety phenotype of Neuroplastin 65-deficient mice

Abstract

Anxiety disorders are the most common psychiatric condition, but the etiology of anxiety disorders remains largely unclear. Our previous studies have shown that neuroplastin 65 deficiency (NP65−/−) mice exhibit abnormal social and mental behaviors and decreased expression of tryptophan hydroxylase 2 (TPH2) protein. However, whether a causal relationship between TPH2 reduction and anxiety disorders exists needs to be determined. In present study, we found that replenishment of TPH2 in dorsal raphe nucleus (DRN) enhanced 5-HT level in the hippocampus and alleviated anxiety-like behaviors. In addition, injection of AAV-NP65 in DRN significantly increased TPH2 expression in DRN and hippocampus, and reduced anxiety-like behaviors. Acute administration of exogenous 5-HT or HTR3 agonist SR57227A in hippocampus mitigated anxiety-like behaviors in NP65−/− mice. Moreover, replenishment of TPH2 in DRN partly repaired the impairment of long-term potentiation (LTP) maintenance in hippocampus of NP65−/− mice. Finally, we found that loss of NP65 lowered transcription factors Lmx1b expression in postnatal stage and replenishment of NP65 in DRN reversed the decrease in Lmx1b expression of NP65−/− mice. Together, our findings reveal that NP65 deficiency induces anxiety phenotype by downregulating DRN-hippocampus serotonergic-HTR3 transmission. These studies provide a novel and insightful view about NP65 function, suggesting an attractive potential target for treatment of anxiety disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Injection of AAV-TPH2 in DRN increases TPH2 and 5-HT level in NP65−/− mice.
Fig. 2: Administration of AAV-TPH2 in DRN or 5-HT in hippocampus partly alleviates anxiety-like behaviors in NP65−/− mice.
Fig. 3: Administration of AAV-NP65 into the DRN partially alleviates anxiety-like behaviors and increases TPH2 level in DRN and hippocampus in NP65−/− mice.
Fig. 4: NP65 deficiency decreases HTR3A level in the hippocampus and HTR3 agonist SR57227A mitigates the anxiety-like behaviors in NP65−/− mice.
Fig. 5: Injection of AAV-TPH2 in DRN reverses the impaired LTP maintenance in hippocampus of NP65−/− mice.
Fig. 6: NP65 deficiency downregulates TPH2 expression via transcription factor Lmx1b in mice.

Similar content being viewed by others

References

  1. Bandelow B, Michaelis S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci. 2015;17:327–35.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li HH, Liu YT, Gao XQ, Liu LF, Amuti S, Wu DD, et al. Neuroplastin 65 modulates anxiety- and depression-like behavior likely through adult hippocampal neurogenesis and central 5-HT activity. FEBS J. 2019;286:3401–15.

    Article  CAS  PubMed  Google Scholar 

  3. Amuti S, Tang YC, Wu S, Liu LF, Huang L, Zhang HB, et al. Neuroplastin 65 mediates cognitive functions via excitatory/inhibitory synapse imbalance and ERK signal pathway. Neurobiol Learn Mem. 2016;127:72–83.

    Article  CAS  PubMed  Google Scholar 

  4. Hill IE, Selkirk CP, Hawkes RB, Beesley PW. Characterization of novel glycoprotein components of synaptic membranes and postsynaptic densities, gp65 and gp55, with a monoclonal antibody. Brain Res. 1988;461:27–43.

    Article  CAS  PubMed  Google Scholar 

  5. Langnaese K, Beesley PW, Gundelfinger ED. Synaptic membrane glycoproteins gp65 and gp55 are new members of the immunoglobulin superfamily. J Biol Chem. 1997;272:821–7.

    Article  CAS  PubMed  Google Scholar 

  6. Langnaese K, Mummery R, Gundelfinger ED, Beesley PW. Immunoglobulin superfamily members gp65 and gp55: tissue distribution of glycoforms. FEBS Lett. 1998;429:284–8.

    Article  CAS  PubMed  Google Scholar 

  7. Smalla KH, Matthies H, Langnäse K, Shabir S, Böckers TM, Wyneken U, et al. The synaptic glycoprotein neuroplastin is involved in long-term potentiation at hippocampal CA1 synapses. Proc Natl Acad Sci USA. 2000;97:4327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bernstein HG, Smalla KH, Bogerts B, Gordon-Weeks PR, Beesley PW, Gundelfinger ED, et al. The immunolocalization of the synaptic glycoprotein neuroplastin differs substantially between the human and the rodent brain. Brain Res. 2007;1134:107–12.

    Article  CAS  PubMed  Google Scholar 

  9. Bhattacharya S, Herrera-Molina R, Sabanov V, Ahmed T, Iscru E, Stöber F, et al. Genetically induced retrograde amnesia of associative memories after neuroplastin ablation. Biol Psychiatry. 2017;81:124–35.

    Article  CAS  PubMed  Google Scholar 

  10. Lowry CA, Johnson PL, Hay-Schmidt A, Mikkelsen J, Shekhar A. Modulation of anxiety circuits by serotonergic systems. Stress. 2005;8:233–46.

    Article  CAS  PubMed  Google Scholar 

  11. Hale MW, Shekhar A, Lowry CA. Stress-related serotonergic systems: implications for symptomatology of anxiety and affective disorders. Cell Mol Neurobiol. 2012;32:695–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Teissier A, Chemiakine A, Inbar B, Bagchi S, Ray RS, Palmiter RD, et al. Activity of raphé serotonergic neurons controls emotional behaviors. Cell Rep. 2015;13:1965–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dolzani SD, Baratta MV, Amat J, Agster KL, Saddoris MP, Watkins LR, et al. Activation of a Habenulo-Raphe circuit is critical for the behavioral and neurochemical consequences of uncontrollable stress in the male rat. eNeuro. 2016;3:e0229.

    Article  Google Scholar 

  14. Nishitani N, Nagayasu K, Asaoka N, Yamashiro M, Andoh C, Nagai Y, et al. Manipulation of dorsal raphe serotonergic neurons modulates active coping to inescapable stress and anxiety-related behaviors in mice and rats. Neuropsychopharmacology. 2019;44:721–32.

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Zhou Y, Li Y, Hu F, Lu Y, Ma M, et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron. 2014;81:1360–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo M, Zhou J, Liu Z. Reward processing by the dorsal raphe nucleus: 5-HT and beyond. Learn Mem. 2015;22:452–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ishimura K, Takeuchi Y, Fujiwara K, Tominaga M, Yoshioka H, Sawada T. Quantitative analysis of the distribution of serotonin-immunoreactive cell bodies in the mouse brain. Neurosci Lett. 1988;91:265–70.

    Article  CAS  PubMed  Google Scholar 

  18. Abrams JK, Johnson PL, Hollis JH, Lowry CA. Anatomic and functional topography of the dorsal raphe nucleus. Ann N Y Acad Sci. 2004;1018:46–57.

    Article  PubMed  Google Scholar 

  19. Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, et al. The roles of serotonin in neuropsychiatric disorders. Cell Mol Neurobiol. 2022;42:1671–92.

    Article  CAS  PubMed  Google Scholar 

  20. Liu LF, Liu YT, Wu DD, Cheng J, Li NN, Zheng YN, et al. Inhibiting 5-hydroxytryptamine receptor 3 alleviates pathological changes of a mouse model of Alzheimer’s disease. Neural Regen Res. 2023;18:2019–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR, Weerakkody T, et al. Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell. 2018;175:472–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bang SJ, Jensen P, Dymecki SM, Commons KG. Projections and interconnections of genetically defined serotonin neurons in mice. Eur J Neurosci. 2012;35:85–96.

    Article  PubMed  Google Scholar 

  23. Zhang X, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science. 2004;305:217.

    Article  CAS  PubMed  Google Scholar 

  24. Song NN, Jia YF, Zhang L, Zhang Q, Huang Y, Liu XZ, et al. Reducing central serotonin in adulthood promotes hippocampal neurogenesis. Sci Rep. 2016;6:20338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jia YF, Song NN, Mao RR, Li JN, Zhang Q, Huang Y, et al. Abnormal anxiety- and depression-like behaviors in mice lacking both central serotonergic neurons and pancreatic islet cells. Front Behav Neurosci. 2014;8:325.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Song NN, Xiu JB, Huang Y, Chen JY, Zhang L, Gutknecht L, et al. Adult raphe-specific deletion of Lmx1b leads to central serotonin deficiency. PLoS One. 2011;6:e15998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dai JX, Han HL, Tian M, Cao J, Xiu JB, Song NN, et al. Enhanced contextual fear memory in central serotonin-deficient mice. Proc Natl Acad Sci USA. 2008;105:11981–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Savelieva KV, Zhao S, Pogorelov VM, Rajan I, Yang Q, Cullinan E, et al. Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS One. 2008;3:e3301.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Naughton M, Mulrooney JB, Leonard BE. A review of the role of serotonin receptors in psychiatric disorders. Hum Psychopharmacol. 2000;15:397–415.

    Article  CAS  PubMed  Google Scholar 

  30. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999;38:1083–152.

    Article  CAS  PubMed  Google Scholar 

  31. Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science. 1991;254:432–7.

    Article  CAS  PubMed  Google Scholar 

  32. Heisler LK, Chu HM, Brennan TJ, Danao JA, Bajwa P, Parsons LH, et al. Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci USA. 1998;95:15049–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kelley SP, Bratt AM, Hodge CW. Targeted gene deletion of the 5-HT3A receptor subunit produces an anxiolytic phenotype in mice. Eur J Pharmacol. 2003;461:19–25.

    Article  CAS  PubMed  Google Scholar 

  34. Li HH, Zeng JJ, Huang L, Wu DD, Liu LF, Liu YT, et al. Microarray analysis of gene expression changes in neuroplastin 65-knockout mice: implications for abnormal cognition and emotional disorders. Neurosci Bull. 2018;34:779–88.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mota CM, Borges GS, Amorim MR, Carolino ROG, Batalhão ME, Anselmo-Franci JA, et al. Central serotonin prevents hypotension and hypothermia and reduces plasma and spleen cytokine levels during systemic inflammation. Brain Behav Immun. 2019;80:255–65.

    Article  CAS  PubMed  Google Scholar 

  36. Voronova IP, Naumenko VS, Khramova GM, Kozyreva TV, Popova NK. Central 5-HT3 receptor-induced hypothermia is associated with reduced metabolic rate and increased heat loss. Neurosci Lett. 2011;504:209–14.

    Article  CAS  PubMed  Google Scholar 

  37. Fletcher PJ, Davies M. Dorsal raphe microinjection of 5-HT and indirect 5-HT agonists induces feeding in rats. Eur J Pharmacol. 1990;184:265–71.

    Article  CAS  PubMed  Google Scholar 

  38. Li XH, Matsuura T, Xue M, Chen QY, Liu RH, Lu JS, et al. Oxytocin in the anterior cingulate cortex attenuates neuropathic pain and emotional anxiety by inhibiting presynaptic long-term potentiation. Cell Rep. 2021;36:109411.

    Article  CAS  PubMed  Google Scholar 

  39. Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol. 2003;463:3–33.

    Article  CAS  PubMed  Google Scholar 

  40. Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2:322–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Crawley JN. Neuropharmacologic specificity of a simple animal model for the behavioral actions of benzodiazepines. Pharmacol Biochem Behav. 1981;15:695–9.

    Article  CAS  PubMed  Google Scholar 

  42. Morales M, Bloom FE. The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J Neurosci. 1997;17:3157–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koyama Y, Kondo M, Shimada S. Building a 5-HT3A receptor expression map in the mouse brain. Sci Rep. 2017;7:42884.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tecott LH, Maricq AV, Julius D. Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc Natl Acad Sci USA. 1993;90:1430–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, Maejima T, Wyler SC, Casadesus G, Herlitze S, Deneris ES. Pet-1 is required across different stages of life to regulate serotonergic function. Nat Neurosci. 2010;13:1190–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deneris ES, Wyler SC. Serotonergic transcriptional networks and potential importance to mental health. Nat Neurosci. 2012;15:519–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ding YQ, Marklund U, Yuan W, Yin J, Wegman L, Ericson J, et al. Lmx1b is essential for the development of serotonergic neurons. Nat Neurosci. 2003;6:933–8.

    Article  CAS  PubMed  Google Scholar 

  48. Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto B, et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron. 2003;37:233–47.

    Article  CAS  PubMed  Google Scholar 

  49. Mosienko V, Bert B, Beis D, Matthes S, Fink H, Bader M, et al. Exaggerated aggression and decreased anxiety in mice deficient in brain serotonin. Transl Psychiatry. 2012;2:e122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abela AR, Browne CJ, Sargin D, Prevot TD, Ji XD, Li Z, et al. Median raphe serotonin neurons promote anxiety-like behavior via inputs to the dorsal hippocampus. Neuropharmacology. 2020;168:107985.

    Article  CAS  PubMed  Google Scholar 

  51. Tikker L, Casarotto P, Singh P, Biojone C, Piepponen TP, Estartús N, et al. Inactivation of the GATA cofactor ZFPM1 results in abnormal development of dorsal raphe serotonergic neuron subtypes and increased anxiety-like behavior. J Neurosci. 2020;40:8669–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Narboux-Nême N, Sagné C, Doly S, Diaz SL, Martin CB, Angenard G, et al. Severe serotonin depletion after conditional deletion of the vesicular monoamine transporter 2 gene in serotonin neurons: neural and behavioral consequences. Neuropsychopharmacology. 2011;36:2538–50.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bandelow B, Michaelis S, Wedekind D. Treatment of anxiety disorders. Dialogues Clin Neurosci. 2017;19:93–107.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Calizo LH, Akanwa A, Ma X, Pan YZ, Lemos JC, Craige C, et al. Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence. Neuropharmacology. 2011;61:524–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang KW, Ochandarena NE, Philson AC, Hyun M, Birnbaum JE, Cicconet M, et al. Molecular and anatomical organization of the dorsal raphe nucleus. Elife. 2019;8:e46464.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ohmura Y, Tsutsui-Kimura I, Sasamori H, Nebuka M, Nishitani N, Tanaka KF, et al. Different roles of distinct serotonergic pathways in anxiety-like behavior, antidepressant-like, and anti-impulsive effects. Neuropharmacology. 2020;167:107703.

    Article  CAS  PubMed  Google Scholar 

  57. Bernabe CS, Caliman IF, Truitt WA, Molosh AI, Lowry CA, Hay-Schmidt A, et al. Using loss- and gain-of-function approaches to target amygdala-projecting serotonergic neurons in the dorsal raphe nucleus that enhance anxiety-related and conditioned fear behaviors. J Psychopharmacol. 2020;34:400–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Paquelet GE, Carrion K, Lacefield CO, Zhou P, Hen R, Miller BR. Single-cell activity and network properties of dorsal raphe nucleus serotonin neurons during emotionally salient behaviors. Neuron. 2022;110:2664–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu XD, Zhu Y, Sun QX, Deng F, Wan J, Zheng D, et al. Distinct serotonergic pathways to the amygdala underlie separate behavioral features of anxiety. Nat Neurosci. 2022;25:1651–63.

    Article  CAS  PubMed  Google Scholar 

  60. Lesch KP, Waider J. Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron. 2012;76:175–91.

    Article  CAS  PubMed  Google Scholar 

  61. Dai JX, Hu ZL, Shi M, Guo C, Ding YQ. Postnatal ontogeny of the transcription factor Lmx1b in the mouse central nervous system. J Comp Neurol. 2008;509:341–55.

    Article  CAS  PubMed  Google Scholar 

  62. Cheng L, Chen CL, Luo P, Tan M, Qiu M, Johnson R, et al. Lmx1b, Pet-1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J Neurosci. 2003;23:9961–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao ZQ, Scott M, Chiechio S, Wang JS, Renner KJ, Gereau RWT, et al. Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J Neurosci. 2006;26:12781–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (81371213 and 81070987) and by grants from the Natural Science Foundation of Shanghai (21ZR1468400).

Author information

Authors and Affiliations

Authors

Contributions

QLY designed the experiments and wrote the manuscript. JC, LC, YNZ, JL and XMZ performed the experiments. LZ and LH analyzed the data. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Qiong-lan Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Chen, L., Zheng, Yn. et al. Disfunction of dorsal raphe nucleus-hippocampus serotonergic-HTR3 transmission results in anxiety phenotype of Neuroplastin 65-deficient mice. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01252-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01252-5

Keywords

Search

Quick links