Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

zDHHC20-driven S-palmitoylation of CD80 is required for its costimulatory function

Abstract

CD80 is a transmembrane glycoprotein belonging to the B7 family, which has emerged as a crucial molecule in T cell modulation via the CD28 or CTLA4 axes. CD80-involved regulation of immune balance is a finely tuned process and it is important to elucidate the underlying mechanism for regulating CD80 function. In this study we investigated the post-translational modification of CD80 and its biological relevance. By using a metabolic labeling strategy, we found that CD80 was S-palmitoylated on multiple cysteine residues (Cys261/262/266/271) in both the transmembrane and the cytoplasmic regions. We further identified zDHHC20 as a bona fide palmitoyl-transferase determining the S-palmitoylation level of CD80. We demonstrated that S-palmitoylation protected CD80 protein from ubiquitination degradation, regulating the protein stability, and ensured its accurate plasma membrane localization. The palmitoylation-deficient mutant (4CS) CD80 disrupted these functions, ultimately resulting in the loss of its costimulatory function upon T cell activation. Taken together, our results describe a new post-translational modification of CD80 by S-palmitoylation as a novel mechanism for the regulation of CD80 upon T cell activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CD80 is S-palmitoylated on multiple cysteine residues.
Fig. 2: zDHHC20 is a major palmitoyl-transferase catalyzing CD80 S-palmitoylation.
Fig. 3: The S-palmitoylation of CD80 is required for its protein stability.
Fig. 4: S-palmitoylation facilitates an accurate plasma membrane localization and maintains costimulatory function for CD80.

Similar content being viewed by others

References

  1. Bednarski JJ, Sleckman BP. At the intersection of DNA damage and immune responses. Nat Rev Immunol. 2019;19:231–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13:227–42.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ruf B, Greten TF, Korangy F. Innate lymphoid cells and innate-like T cells in cancer - at the crossroads of innate and adaptive immunity. Nat Rev Cancer. 2023;23:351–71.

    Article  CAS  PubMed  Google Scholar 

  4. Kumar BV, Connors TJ, Farber DL. Human T cell development, localization, and function throughout life. Immunity. 2018;48:202–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fragoso R, Ren D, Zhang X, Su MW, Burakoff SJ, Jin YJ. Lipid raft distribution of CD4 depends on its palmitoylation and association with Lck, and evidence for CD4-induced lipid raft aggregation as an additional mechanism to enhance CD3 signaling. J Immunol. 2003;170:913–21.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang W, Trible RP, Samelson LE. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity. 1998;9:239–46.

    Article  CAS  PubMed  Google Scholar 

  7. Akimzhanov AM, Boehning D. Rapid and transient palmitoylation of the tyrosine kinase Lck mediates fas signaling. Proc Natl Acad Sci USA. 2015;112:11876–80.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Fredericks GJ, Hoffmann FW, Rose AH, Osterheld HJ, Hess FM, Mercier F, et al. Stable expression and function of the inositol 1,4,5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex. Proc Natl Acad Sci USA. 2014;111:16478–83.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Yao H, Lan J, Li C, Shi H, Brosseau JP, Wang H, et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng. 2019;3:306–17.

    Article  CAS  PubMed  Google Scholar 

  10. Yang Y, Hsu JM, Sun L, Chan LC, Li CW, Hsu JL, et al. Palmitoylation stabilizes PD-L1 to promote breast tumor growth. Cell Res. 2019;29:83–6.

    Article  PubMed  Google Scholar 

  11. Chen R, Ganesan A, Okoye I, Arutyunova E, Elahi S, Lemieux MJ, et al. Targeting B7-1 in immunotherapy. Med Res Rev. 2020;40:654–82.

    Article  CAS  PubMed  Google Scholar 

  12. Pulanco MC, Madsen AT, Tanwar A, Corrigan DT, Zang X. Recent advancements in the B7/CD28 immune checkpoint families: new biology and clinical therapeutic strategies. Cell Mol Immunol. 2023;20:694–713.

    Article  CAS  PubMed  Google Scholar 

  13. Nishimura CD, Pulanco MC, Cui W, Lu L, Zang X. PD-L1 and B7-1 cis-interaction: new mechanisms in immune checkpoints and immunotherapies. Trends Mol Med. 2021;27:207–19.

    Article  CAS  PubMed  Google Scholar 

  14. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–5.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378:158–68.

    Article  CAS  PubMed  Google Scholar 

  16. Ramos-Casals M, Brahmer JR, Callahan MK, Flores-Chavez A, Keegan N, Khamashta MA, et al. Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Prim. 2020;6:38.

    Article  PubMed  Google Scholar 

  17. Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem Rev. 2018;118:919–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chamberlain LH, Shipston MJ. The physiology of protein S-acylation. Physiol Rev. 2015;95:341–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ko PJ, Dixon SJ. Protein palmitoylation and cancer. EMBO Rep. 2018;19:e46666.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lanyon-Hogg T, Faronato M, Serwa RA, Tate EW. Dynamic protein acylation: new substrates, mechanisms, and drug targets. Trends Biochem Sci. 2017;42:566–81.

    Article  CAS  PubMed  Google Scholar 

  21. Lu B, Chen XB, Hong YC, Zhu H, He QJ, Yang B, et al. Identification of PRDX6 as a regulator of ferroptosis. Acta Pharmacol Sin. 2019;40:1334–42.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yuan M, Chen X, Sun Y, Jiang L, Xia Z, Ye K, et al. Zdhhc12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression. Acta Pharm Sin B. 2020;10:1426–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao J, Sun L, Aramsangtienchai P, Spiegelman NA, Zhang X, Huang W, et al. HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proc Natl Acad Sci USA. 2019;116:5487–92.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Zhang Z, Li X, Yang F, Chen C, Liu P, Ren Y, et al. DHHC9-mediated glut1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat Commun. 2021;12:5872.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Wang J, Hao JW, Wang X, Guo H, Sun HH, Lai XY, et al. DHHC4 and DHHC5 facilitate fatty acid uptake by palmitoylating and targeting CD36 to the plasma membrane. Cell Rep. 2019;26:209–21.

    Article  PubMed  Google Scholar 

  26. Mesquita FS, Abrami L, Sergeeva O, Turelli P, Qing E, Kunz B, et al. S-acylation controls SARS-cov-2 membrane lipid organization and enhances infectivity. Dev Cell. 2021;56:2790–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mukai K, Konno H, Akiba T, Uemura T, Waguri S, Kobayashi T, et al. Activation of Sting requires palmitoylation at the Golgi. Nat Commun. 2016;7:11932.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Runkle KB, Kharbanda A, Stypulkowski E, Cao XJ, Wang W, Garcia BA, et al. Inhibition of DHHC20-mediated EGFR palmitoylation creates a dependence on EGFR signaling. Mol Cell. 2016;62:385–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cao J, Chen X, Jiang L, Lu B, Yuan M, Zhu D, et al. DJ-1 suppresses ferroptosis through preserving the activity of S-adenosyl homocysteine hydrolase. Nat Commun. 2020;11:1251.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Lee CJ, Stix R, Rana MS, Shikwana F, Murphy RE, Ghirlando R, et al. Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase. Proc Natl Acad Sci USA. 2022;119:e2022050119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin H. Protein cysteine palmitoylation in immunity and inflammation. FEBS J. 2021;288:7043–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Du W, Hua F, Li X, Zhang J, Li S, Wang W, et al. Loss of optineurin drives cancer immune evasion via palmitoylation-dependent IFNGR1 lysosomal sorting and degradation. Cancer Discov. 2021;11:1826–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Piper RC, Luzio JP. Ubiquitin-dependent sorting of integral membrane proteins for degradation in lysosomes. Curr Opin Cell Biol. 2007;19:459–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hegde RS, Keenan RJ. The mechanisms of integral membrane protein biogenesis. Nat Rev Mol Cell Biol. 2022;23:107–24.

    Article  CAS  PubMed  Google Scholar 

  35. Braun M, Aguilera AR, Sundarrajan A, Corvino D, Stannard K, Krumeich S, et al. CD155 on tumor cells drives resistance to immunotherapy by inducing the degradation of the activating receptor CD226 in CD8+ T cells. Immunity. 2020;53:805–23.

    Article  CAS  PubMed  Google Scholar 

  36. Su X, Ditlev JA, Hui E, Xing W, Banjade S, Okrut J, et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science. 2016;352:595–9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Matic J, Deeg J, Scheffold A, Goldstein I, Spatz JP. Fine tuning and efficient T cell activation with stimulatory ACD3 nanoarrays. Nano Lett. 2013;13:5090–7.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. CD28 costimulation: from mechanism to therapy. Immunity. 2016;44:973–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thinon E, Percher A, Hang HC. Bioorthogonal chemical reporters for monitoring unsaturated fatty-acylated proteins. Chembiochem. 2016;17:1800–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sobocinska J, Roszczenko-Jasinska P, Zareba-Koziol M, Hromada-Judycka A, Matveichuk OV, Traczyk G, et al. Lipopolysaccharide upregulates palmitoylated enzymes of the phosphatidylinositol cycle: an insight from proteomic studies. Mol Cell Proteom. 2018;17:233–54.

    Article  CAS  Google Scholar 

  41. Chesarino NM, Hach JC, Chen JL, Zaro BW, Rajaram MV, Turner J, et al. Chemoproteomics reveals Toll-like receptor fatty acylation. BMC Biol. 2014;12:91.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Thinon E, Fernandez JP, Molina H, Hang HC. Selective enrichment and direct analysis of protein S-palmitoylation sites. J Proteome Res. 2018;17:1907–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mcmichael TM, Zhang L, Chemudupati M, Hach JC, Kenney AD, Hang HC, et al. The palmitoyltransferase ZDHHC20 enhances interferon-induced transmembrane protein 3 (IFITM3) palmitoylation and antiviral activity. J Biol Chem. 2017;292:21517–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carreras-Sureda A, Abrami L, Ji-Hee K, Wang WA, Henry C, Frieden M, et al. S-acylation by ZDHHC20 targets Orai1 channels to lipid rafts for efficient Ca2+ signaling by Jurkat t cell receptors at the immune synapse. Elife. 2021;10:e72051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit t cell responses. Immunity. 2007;27:111–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Park JJ, Omiya R, Matsumura Y, Sakoda Y, Kuramasu A, Augustine MM, et al. B7-h1/CD80 interaction is required for the induction and maintenance of peripheral t-cell tolerance. Blood. 2010;116:1291–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chaudhri A, Xiao Y, Klee AN, Wang X, Zhu B, Freeman GJ. PD-L1 binds to B7-1 only in cis on the same cell surface. Cancer Immunol Res. 2018;6:921–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao Y, Lee CK, Lin CH, Gassen RB, Xu X, Huang Z, et al. PD-L1: CD80 cis-heterodimer triggers the co-stimulatory receptor CD28 while repressing the inhibitory PD-1 and CTLA-4 pathways. Immunity. 2019;51:1059–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sugiura D, Maruhashi T, Okazaki IM, Shimizu K, Maeda TK, Takemoto T, et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science. 2019;364:558–66.

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Zhang M, Zhou L, Xu Y, Yang M, Xu Y, Komaniecki GP, et al. A STAT3 palmitoylation cycle promotes Th17 differentiation and colitis. Nature. 2020;586:434–9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Hao JW, Wang J, Guo H, Zhao YY, Sun HH, Li YF, et al. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nat Commun. 2020;11:4765.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Zhejiang Provincial Natural Science Foundation of China (LR22H310002 to JC), the National Natural Science Foundation of China (No. 82330114 to QH), and the Fundamental Research Funds for the Central Universities (226-2023-00059).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: BL, BY, QJH, JL and JC; Experimental operation: BL, YYS and BYC; Collection and assembly of data: BL; Manuscript writing: BL and JC; Final approval of manuscript: all authors.

Corresponding authors

Correspondence to Qiao-jun He, Jun Li or Ji Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, B., Sun, Yy., Chen, By. et al. zDHHC20-driven S-palmitoylation of CD80 is required for its costimulatory function. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01248-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01248-1

Keywords

Search

Quick links