Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vagus nerve stimulation as a promising neuroprotection for ischemic stroke via α7nAchR-dependent inactivation of microglial NLRP3 inflammasome

Abstract

Ischemic stroke is a major cause of disability and death worldwide, and its management requires urgent attention. Previous studies have shown that vagus nerve stimulation (VNS) exerts neuroprotection in ischemic stroke by inhibiting neuroinflammation and apoptosis. In this study, we evaluated the timing for VNS intervention in ischemic stroke, and the underlying mechanisms  of VNS-induced neuroprotection. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min. The left vagus nerve at cervical level was exposed and attached to an electrode connected to a low-frequency electrical stimulator. Vagus nerve stimulation (VNS) was given for 60 min before, during and after tMCAO (Pre-VNS, Dur-VNS, Post-VNS). Neurological function was assessed 24 h after reperfusion. We found that all the three VNS significantly protected against the tMCAO-induced injury evidenced by improved neurological function and reduced infarct volume. Moreover, the Pre-VNS was the most effective against the ischemic injury. We found that tMCAO activated microglia in the ischemic core and penumbra regions of the brain, followed by the NLRP3 inflammasome activation-induced neuroinflammation, which finally triggered neuronal death. VNS treatment preserved α7nAChR expression in the penumbra regions, inhibited NLRP3 inflammasome activation and ensuing neuroinflammation, rescuing cerebral neurons. The role of α7nAChR in microglial NLRP3 inflammasome activation in ischemic stroke was further validated using genetic manipulations, including Chrna7 knockout mice and microglial Chrna7 overexpression mice, as well as pharmacological interventions using the α7nAChR inhibitor methyllycaconitine and agonist PNU-282987. Collectively, this study demonstrates the potential of VNS as a safe and effective strategy to treat ischemic stroke, and presents a new approach targeting microglial NLRP3 inflammasome, which might be therapeutic for other inflammation-related diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: VNS treatment improves neurological function and reduces infarct volume in the tMCAO mouse model.
Fig. 2: VNS treatment rescues neuronal loss via inhibiting microglia activation-induced neuroinflammation.
Fig. 3: VNS treatment inhibits microglial NLRP3 inflammasome activation in the penumbra region of tMCAO mice.
Fig. 4: VNS treatment preserves α7nAChR expression in the penumbra area of tMCAO mice.
Fig. 5: Pharmacological inhibition of α7nAChR abrogates the protective effect of VNS treatment on ischemic injury.
Fig. 6: Genetic deletion of Chrna7 abolishes the therapeutic effect of VNS treatment on ischemic injury.
Fig. 7: Overexpression of microglial Chrna7 reinstates the therapeutic efficacy of VNS intervention on ischemic injury.
Fig. 8: Activation of α7nAChR by PNU treatment inhibits NLRP3 expression through NF-κB signaling.
Fig. 9: Activation of α7nAChR by PNU treatment inhibits microglial NLRP3 inflammasome-induced neuronal death.
Fig. 10: Schematic illustration of α7nAChR-dependent inactivation of microglial NLRP3 inflammasome.

Similar content being viewed by others

References

  1. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, et al. World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke. 2022;17:18–29.

    Article  PubMed  Google Scholar 

  2. Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies. Exp Neurol. 2021;335:113518.

    Article  CAS  PubMed  Google Scholar 

  3. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflamm. 2019;16:142.

    Article  Google Scholar 

  4. Liao S, Wu J, Liu R, Wang S, Luo J, Yang Y, et al. A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: role of Akt(Ser473)/GSK3beta(Ser9)-mediated Nrf2 activation. Redox Biol. 2020;36:101644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jia H, Qi X, Fu L, Wu H, Shang J, Qu M, et al. NLRP3 inflammasome inhibitor ameliorates ischemic stroke by reprogramming the phenotype of microglia/macrophage in a murine model of distal middle cerebral artery occlusion. Neuropathology. 2022;42:181–9.

    Article  CAS  PubMed  Google Scholar 

  6. Ge Y, Wang L, Wang C, Chen J, Dai M, Yao S, et al. CX3CL1 inhibits NLRP3 inflammasome-induced microglial pyroptosis and improves neuronal function in mice with experimentally-induced ischemic stroke. Life Sci. 2022;300:120564.

    Article  CAS  PubMed  Google Scholar 

  7. Luo L, Liu M, Fan Y, Zhang J, Liu L, Li Y, et al. Intermittent theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via TLR4/NFkappaB/NLRP3 signaling pathway in cerebral ischemic mice. J Neuroinflamm. 2022;19:141.

    Article  CAS  Google Scholar 

  8. Sapkota A, Choi JW. Oleanolic acid provides neuroprotection against ischemic stroke through the inhibition of microglial activation and NLRP3 inflammasome activation. Biomol Ther (Seoul). 2022;30:55–63.

    Article  CAS  PubMed  Google Scholar 

  9. Gonzalez HFJ, Yengo-Kahn A, Englot DJ. Vagus nerve stimulation for the treatment of epilepsy. Neurosurg Clin N Am. 2019;30:219–30.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tang H, Li J, Zhou Q, Li S, Xie C, Niu L, et al. Vagus nerve stimulation alleviated cerebral ischemia and reperfusion injury in rats by inhibiting pyroptosis via alpha7 nicotinic acetylcholine receptor. Cell Death Discov. 2022;8:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang Y, Li L, Tan X, Liu B, Zhang Y, Li C. miR-210 mediates vagus nerve stimulation-induced antioxidant stress and anti-apoptosis reactions following cerebral ischemia/reperfusion injury in rats. J Neurochem. 2015;134:173–81.

    Article  CAS  PubMed  Google Scholar 

  12. Dawson J, Liu CY, Francisco GE, Cramer SC, Wolf SL, Dixit A, et al. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet. 2021;397:1545–53.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu Y, Xu S, Zhang H, Qian K, Huang J, Gu X, et al. Stimulation of alpha7-nAChRs coordinates autophagy and apoptosis signaling in experimental knee osteoarthritis. Cell Death Dis. 2021;12:448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20:84–91.

    Article  CAS  PubMed  Google Scholar 

  15. Schaar KL, Brenneman MM, Savitz SI. Functional assessments in the rodent stroke model. Exp Transl Stroke Med. 2010;2:13.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shi M, Cao L, Cao X, Zhu M, Zhang X, Wu Z, et al. DR-region of Na+/K+ ATPase is a target to treat excitotoxicity and stroke. Cell Death Dis. 2018;10:6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cao L, Xiong S, Wu Z, Ding L, Zhou Y, Sun H, et al. Anti-Na+/K+-ATPase immunotherapy ameliorates alpha-synuclein pathology through activation of Na+/K+-ATPase alpha1-dependent autophagy. Sci Adv. 2021;7:eabc5062.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clements RT, Fuller LE, Kraemer KR, Radomski SA, Hunter-Chang S, Hall WC, et al. Quantification of neurite degeneration with enhanced accuracy and efficiency in an in vitro model of Parkinson’s disease. eNeuro. 2022;9:ENEURO.0327–21.2022.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu M, Cao L, Xiong S, Sun H, Wu Z, Bian JS. Na+/K+-ATPase-dependent autophagy protects brain against ischemic injury. Signal Transduct Target Ther. 2020;5:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luo Y, Reis C, Chen S. NLRP3 inflammasome in the pathophysiology of hemorrhagic stroke: a review. Curr Neuropharmacol. 2019;17:582–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brahadeeswaran S, Sivagurunathan N, Calivarathan L. Inflammasome signaling in the aging brain and age-related neurodegenerative diseases. Mol Neurobiol. 2022;59:2288–304.

    Article  CAS  PubMed  Google Scholar 

  22. Matta JA, Gu S, Davini WB, Bredt DS. Nicotinic acetylcholine receptor redux: discovery of accessories opens therapeutic vistas. Science. 2021;373:eabg6539.

    Article  CAS  PubMed  Google Scholar 

  23. Paul SM, Yohn SE, Popiolek M, Miller AC, Felder CC. Muscarinic acetylcholine receptor agonists as novel treatments for schizophrenia. Am J Psychiatry. 2022;179:611–27.

    Article  PubMed  Google Scholar 

  24. Theofani E, Semitekolou M, Samitas K, Mais A, Galani IE, Triantafyllia V, et al. TFEB signaling attenuates NLRP3-driven inflammatory responses in severe asthma. Allergy. 2022;77:2131–46.

    Article  CAS  PubMed  Google Scholar 

  25. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Leak RK, Cao G. Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front Cell Neurosci. 2022;16:980722.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huffman WJ, Subramaniyan S, Rodriguiz RM, Wetsel WC, Grill WM, Terrando N. Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul. 2019;12:19–29.

    Article  PubMed  Google Scholar 

  28. Voet S, Srinivasan S, Lamkanfi M, van Loo G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med. 2019;11:e10248.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang L, Ren W, Wu Q, Liu T, Wei Y, Ding J, et al. NLRP3 inflammasome activation: a therapeutic target for cerebral ischemia-reperfusion injury. Front Mol Neurosci. 2022;15:847440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonaz B, Picq C, Sinniger V, Mayol JF, Clarencon D. Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol Motil. 2013;25:208–21.

    Article  CAS  PubMed  Google Scholar 

  31. Su Y, Zhang W, Zhang R, Yuan Q, Wu R, Liu X, et al. Activation of cholinergic anti-inflammatory pathway ameliorates cerebral and cardiac dysfunction after intracerebral hemorrhage through autophagy. Front Immunol. 2022;13:870174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao XP, Zhao Y, Qin XY, Wan LY, Fan XX. Non-invasive vagus nerve stimulation protects against cerebral ischemia/reperfusion injury and promotes microglial M2 polarization via interleukin-17A inhibition. J Mol Neurosci. 2019;67:217–26.

    Article  CAS  PubMed  Google Scholar 

  33. Ekici F, Karson A, Dillioglugil MO, Gurol G, Kir HM, Ates N. The effects of vagal nerve stimulation in focal cerebral ischemia and reperfusion model. Turk Neurosurg. 2013;23:451–7.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82204357, 82173797), the National Key R&D Program of China (2021ZD0202903), the Natural Science Fund of the Basic Research Program of the Science and Technology Department of Jiangsu Province (BK20231267) and the Medical Research Project of Jiangsu Provincial Health Commission (M2022071).

Author information

Authors and Affiliations

Authors

Contributions

ML, XL, and LC conceived and designed this study. XMX, YD, YPW, SYJ, and YFD acquired, analyzed, and interpreted the data. YZ, RXH, and CQ contributed to the methodologies. LC wrote the original manuscript draft. ML and XL revised the manuscript and supervised the project. All authors have confirmed the submission of this manuscript.

Corresponding authors

Correspondence to Lei Cao, Xiao Lu or Ming Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Xm., Duan, Y., Wang, Yp. et al. Vagus nerve stimulation as a promising neuroprotection for ischemic stroke via α7nAchR-dependent inactivation of microglial NLRP3 inflammasome. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01245-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01245-4

Keywords

Search

Quick links