Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GPR41 deficiency aggravates type 1 diabetes in streptozotocin-treated mice by promoting dendritic cell maturation

Abstract

Disturbances in intestinal immune homeostasis predispose susceptible individuals to type 1 diabetes (T1D). G-protein-coupled receptor 41 (GPR41) is a receptor for short-chain fatty acids (SCFAs) mainly produced by gut microbiota, which plays key roles in maintaining intestinal homeostasis. In this study, we investigated the role of GPR41 in the progression of T1D. In non-obese diabetic (NOD) mice, we found that aberrant reduction of GPR41 expression in the pancreas and colons was associated with the development of T1D. GPR41-deficient (Gpr41−/−) mice displayed significantly exacerbated streptozotocin (STZ)-induced T1D compared to wild-type mice. Furthermore, Gpr41−/− mice showed enhanced gut immune dysregulation and increased migration of gut-primed IFN-γ+ T cells to the pancreas. In bone marrow-derived dendritic cells from Gpr41−/− mice, the expression of suppressor of cytokine signaling 3 (SOCS) was significantly inhibited, while the phosphorylation of STAT3 was significantly increased, thus promoting dendritic cell (DC) maturation. Furthermore, adoptive transfer of bone marrow-derived dendritic cells (BMDC) from Gpr41−/− mice accelerated T1D in irradiated NOD mice. We conclude that GPR41 is essential for maintaining intestinal and pancreatic immune homeostasis and acts as a negative regulator of DC maturation in T1D. GPR41 may be a potential therapeutic target for T1D.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The expression of GPR41 is decreased during T1D development.
Fig. 2: GPR41 deficiency aggravates T1D development in STZ-induced diabetes.
Fig. 3: GPR41 deficiency aggravates intestinal immune dysfunction.
Fig. 4: GPR41 deficiency disrupts the immune balance in the pancreas.
Fig. 5: GPR41 deficiency promotes the migration of intestinal effector CD8+ T cells to the pancreas.
Fig. 6: GPR41-deficient DCs aggravate pancreatic immune imbalance in NOD mice.
Fig. 7: GPR41 deficiency induces DC maturation by SOCS3/STAT3 signaling.
Fig. 8: Graphical summary for the role and mechanism of GPR41 deficiency in mediating the development of T1D in mice.

Similar content being viewed by others

References

  1. S EG. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med. 1986;314:1360–8.

    Google Scholar 

  2. DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018;391:2449–62.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bluestone JA, Buckner JH, Herold KC. Immunotherapy: Building a bridge to a cure for type 1 diabetes. Science. 2021;373:510–6.

    Article  CAS  PubMed  Google Scholar 

  4. Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N. SCFA: mechanisms and functional importance in the gut. Proc Nutr Soc. 2021;80:37–49.

    Article  CAS  PubMed  Google Scholar 

  5. Pan LL, Ren ZN, Yang J, Li BB, Huang YW, Song DX, et al. Gut microbiota controls the development of chronic pancreatitis: A critical role of short-chain fatty acids-producing Gram-positive bacteria. Acta Pharm Sin B. 2023;13:4202–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562:589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang J, Pearson JA, Peng J, Hu Y, Sha S, Xing Y, et al. Gut microbial metabolites alter IgA immunity in type 1 diabetes. JCI Insight. 2020;5:e135718.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278:11312–9.

    Article  CAS  PubMed  Google Scholar 

  9. Yang W, Yu T, Huang X, Bilotta AJ, Xu L, Lu Y, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun. 2020;11:4457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakajima A, Kaga N, Nakanishi Y, Ohno H, Miyamoto J, Kimura I, et al. Maternal high fiber diet during pregnancy and lactation influences regulatory T cell differentiation in offspring in mice. J Immunol. 2017;199:3516–24.

    Article  CAS  PubMed  Google Scholar 

  11. Iraporda C, Errea A, Romanin DE, Cayet D, Pereyra E, Pignataro O, et al. Lactate and short-chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology. 2015;220:1161–9.

    Article  CAS  PubMed  Google Scholar 

  12. Nastasi C, Candela M, Bonefeld CM, Geisler C, Hansen M, Krejsgaard T, et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci Rep. 2015;5:16148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liang W, Enée E, Andre-Vallee C, Falcone M, Sun J, Diana J. Intestinal cathelicidin antimicrobial peptide shapes a protective neonatal gut microbiota against pancreatic autoimmunity. Gastroenterology. 2022;162:1288–302.e16.

    Article  CAS  PubMed  Google Scholar 

  14. Turley S, Poirot L, Hattori M, Benoist C, Mathis D. Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med. 2003;198:1527–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khan FU, Khongorzul P, Raki AA, Rajasekaran A, Gris D, Amrani A. Dendritic cells and their immunotherapeutic potential for treating type 1 diabetes. Int J Mol Sci. 2022;23:4885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saxena V, Ondr JK, Magnusen AF, Munn DH, Katz JD. The countervailing actions of myeloid and plasmacytoid dendritic cells control autoimmune diabetes in the nonobese diabetic mouse. J Immunol. 2007;179:5041–53.

    Article  CAS  PubMed  Google Scholar 

  17. Nikolic T, Suwandi JS, Wesselius J, Laban S, Joosten AM, Sonneveld P, et al. Tolerogenic dendritic cells pulsed with islet antigen induce long-term reduction in T-cell autoreactivity in type 1 diabetes patients. Front Immunol. 2022;13:1054968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zerif E, Maalem A, Gaudreau S, Guindi C, Ramzan M, Véroneau S, et al. Constitutively active Stat5b signaling confers tolerogenic functions to dendritic cells of NOD mice and halts diabetes progression. J Autoimmun. 2017;76:63–74.

    Article  CAS  PubMed  Google Scholar 

  19. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159–66.

    Article  CAS  PubMed  Google Scholar 

  20. Bellahcene M, O’Dowd JF, Wargent ET, Zaibi MS, Hislop DC, Ngala RA, et al. Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. Br J Nutr. 2013;109:1755–64.

    Article  CAS  PubMed  Google Scholar 

  21. Jia LL, Li JH, Zhang M, Liu H, Ren ZN, Dong XL, et al. Cathelicidin-related antimicrobial peptide protects against enteric pathogen-accelerated type 1 diabetes in mice. Theranostics. 2022;12:3438–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roney K. Bone marrow-derived dendritic cells. Methods Mol Biol. 2019;1960:57–62.

    Article  CAS  PubMed  Google Scholar 

  23. Kaminitz A, Mizrahi K, Yaniv I, Stein J, Askenasy N. Immunosuppressive therapy exacerbates autoimmunity in NOD mice and diminishes the protective activity of regulatory T cells. J Autoimmun. 2010;35:145–52.

    Article  CAS  PubMed  Google Scholar 

  24. Kaminitz A, Mizrahi K, Yaniv I, Farkas DL, Stein J, Askenasy N. Low levels of allogeneic but not syngeneic hematopoietic chimerism reverse autoimmune insulitis in prediabetic NOD mice. J Autoimmun. 2009;33:83–91.

    Article  CAS  PubMed  Google Scholar 

  25. Chen K, Chen H, Faas MM, de Haan BJ, Li J, Xiao P, et al. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis. Mol Nutr Food Res. 2017;61:1601006.

  26. Pearson JA, Wong FS, Wen L. The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes. J Autoimmun. 2016;66:76–88.

    Article  CAS  PubMed  Google Scholar 

  27. Jia LL, Zhang M, Liu H, Sun J, Pan LL. Early-life fingolimod treatment improves intestinal homeostasis and pancreatic immune tolerance in non-obese diabetic mice. Acta Pharmacol Sin. 2021;42:1620–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pan X, Fang X, Wang F, Li H, Niu W, Liang W, et al. Butyrate ameliorates caerulein-induced acute pancreatitis and associated intestinal injury by tissue-specific mechanisms. Br J Pharmacol. 2019;176:4446–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ang Z, Ding JL. GPR41 and GPR43 in obesity and inflammation-protective or causative? Front Immunol. 2016;7:28.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chang G, Zhang H, Wang Y, Ma N, Chandra RA, Ye G, et al. Microbial community shifts elicit inflammation in the caecal mucosa via the GPR41/43 signalling pathway during subacute ruminal acidosis. BMC Vet Res. 2019;15:298.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Duca FA, Swartz TD, Sakar Y, Covasa M. Increased oral detection, but decreased intestinal signaling for fats in mice lacking gut microbiota. PLoS One. 2012;7:e39748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun J, Furio L, Mecheri R, van der Does AM, Lundeberg E, Saveanu L, et al. Pancreatic beta-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity. 2015;43:304–17.

    Article  CAS  PubMed  Google Scholar 

  33. Wurster JI, Peterson RL, Brown CE, Penumutchu S, Guzior DV, Neugebauer K, et al. Streptozotocin-induced hyperglycemia alters the cecal metabolome and exacerbates antibiotic-induced dysbiosis. Cell Rep. 2021;37:110113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Graham S, Courtois P, Malaisse WJ, Rozing J, Scott FW, Mowat AM. Enteropathy precedes type 1 diabetes in the BB rat. Gut. 2004;53:1437–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Patrick C, Wang GS, Lefebvre DE, Crookshank JA, Sonier B, Eberhard C, et al. Promotion of autoimmune diabetes by cereal diet in the presence or absence of microbes associated with gut immune activation, regulatory imbalance, and altered cathelicidin antimicrobial peptide. Diabetes. 2013;62:2036–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E, Blacher E, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018;359:1376–83.

    Article  CAS  PubMed  Google Scholar 

  37. Sorini C, Cosorich I, Lo Conte M, De Giorgi L, Facciotti F, Luciano R, et al. Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes. Proc Natl Acad Sci USA. 2019;116:15140–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mariño E, Richards JL, McLeod KH, Stanley D, Yap YA, Knight J, et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol. 2017;18:552–62.

    Article  PubMed  Google Scholar 

  39. Wu C, Pan LL, Luo Y, Niu W, Fang X, Liang W, et al. Low methoxyl pectin protects against autoimmune diabetes and associated caecal dysfunction. Mol Nutr food Res. 2019;63:e1900307.

    Article  PubMed  Google Scholar 

  40. Coutant F, Miossec P. Altered dendritic cell functions in autoimmune diseases: distinct and overlapping profiles. Nat Rev Rheumatol. 2016;12:703–15.

    Article  CAS  PubMed  Google Scholar 

  41. Liu C, Whitener RL, Lin A, Xu Y, Chen J, Savinov A, et al. Neutrophil cytosolic factor 1 in dendritic cells promotes autoreactive CD8+ T cell activation via cross-presentation in type 1 diabetes. Front Immunol. 2019;10:952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zirnheld AL, Villard M, Harrison AM, Kosiewicz MM, Alard P. β-Catenin stabilization in NOD dendritic cells increases IL-12 production and subsequent induction of IFN-γ-producing T cells. J Leukoc Biol. 2019;106:1349–58.

    Article  CAS  PubMed  Google Scholar 

  43. Tai N, Yasuda H, Xiang Y, Zhang L, Rodriguez-Pinto D, Yokono K, et al. IL-10-conditioned dendritic cells prevent autoimmune diabetes in NOD and humanized HLA-DQ8/RIP-B7.1 mice. Clin Immunol. 2011;139:336–49.

    Article  CAS  PubMed  Google Scholar 

  44. Alam C, Valkonen S, Palagani V, Jalava J, Eerola E, Hänninen A. Inflammatory tendencies and overproduction of IL-17 in the colon of young NOD mice are counteracted with diet change. Diabetes. 2010;59:2237–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang W, Yang M, Yu L, Hu Y, Deng Y, Liu Y, et al. Long non-coding RNA lnc-DC in dendritic cells regulates trophoblast invasion via p-STAT3-mediated TIMP/MMP expression. Am J Reprod Immunol. 2020;83:e13239.

    Article  CAS  PubMed  Google Scholar 

  46. Milner JD, Vogel TP, Forbes L, Ma CA, Stray-Pedersen A, Niemela JE, et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood. 2015;125:591–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Laouar Y, Welte T, Fu XY, Flavell RA. STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity. 2003;19:903–12.

    Article  CAS  PubMed  Google Scholar 

  48. Onai N, Obata-Onai A, Tussiwand R, Lanzavecchia A, Manz MG. Activation of the Flt3 signal transduction cascade rescues and enhances type I interferon-producing and dendritic cell development. J Exp Med. 2006;203:227–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li HS, Yang CY, Nallaparaju KC, Zhang H, Liu YJ, Goldrath AW, et al. The signal transducers STAT5 and STAT3 control expression of Id2 and E2-2 during dendritic cell development. Blood. 2012;120:4363–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol. 2007;7:454–65.

    Article  CAS  PubMed  Google Scholar 

  51. Shi D, Wang Q, Zheng H, Li D, Shen Y, Fu H, et al. Paeoniflorin suppresses IL-6/Stat3 pathway via upregulation of Socs3 in dendritic cells in response to 1-chloro-2,4-dinitrobenze. Int Immunopharmacol. 2016;38:45–53.

    Article  CAS  PubMed  Google Scholar 

  52. Jiang M, Zhang WW, Liu P, Yu W, Liu T, Yu J. Dysregulation of SOCS-mediated negative feedback of cytokine signaling in carcinogenesis and its significance in cancer treatment. Front Immunol. 2017;8:70.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li Y, Chu N, Rostami A, Zhang GX. Dendritic cells transduced with SOCS-3 exhibit a tolerogenic/DC2 phenotype that directs type 2 Th cell differentiation in vitro and in vivo. J Immunol. 2006;177:1679–88.

    Article  CAS  PubMed  Google Scholar 

  54. Croker BA, Metcalf D, Robb L, Wei W, Mifsud S, DiRago L, et al. SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis. Immunity. 2004;20:153–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by funds from the National Natural Science Foundation of China (Grant Nos. 82122068 and 82070666), the Fundamental Research Funds for the Central Universities (Grant No. JUSRP121009), the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20200016 and BK20221086, China), the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, the Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant No. 2022ZB484), the top medical expert team of Wuxi Taihu Talent Plan (Grant Nos. DJTD202106 and GDTD202105), the Medical Key Discipline Program of Wuxi Health Commission (Grant Nos. ZDXK2021007 and CXTD2021005), the Scientific Research Program of Wuxi Health Commission (Grant Nos. Z202109 and M202208), and the Wuxi Science and Technology Development Fund (Grant No. Y20222001).

Author information

Authors and Affiliations

Authors

Contributions

JS and LLP designed and interpreted experiments. JHL, MZ, and ZDZ performed experiments and analyzed data. JHL, ZDZ, and XHP drafted the manuscript. JS and LLP critically reviewed the manuscript. All authors approved the final manuscript.

Corresponding authors

Correspondence to Li-long Pan or Jia Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jh., Zhang, M., Zhang, Zd. et al. GPR41 deficiency aggravates type 1 diabetes in streptozotocin-treated mice by promoting dendritic cell maturation. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01242-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01242-7

Keywords

Search

Quick links