Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brigatinib, a newly discovered AXL inhibitor, suppresses AXL-mediated acquired resistance to osimertinib in EGFR-mutated non-small cell lung cancer

Abstract

In addition to the classical resistance mechanisms, receptor tyrosine-protein kinase AXL is a main mechanism of resistance to third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) osimertinib in EGFR-mutated non-small cell lung cancer (NSCLC). Developing an effective AXL inhibitor is important to sensitize osimertinib in clinical application. In this study we assessed the efficacy of brigatinib, a second-generation of anaplastic lymphoma kinase (ALK)-TKI, as a novel AXL inhibitor, in overcoming acquired resistance to osimertinib induced by AXL activation. We established an AXL-overexpression NSCLC cell line and conducted high-throughput screening of a small molecule chemical library containing 510 anti-tumor drugs. We found that brigatinib potently inhibited AXL expression, and that brigatinib (0.5 μM) significantly enhanced the anti-tumor efficacy of osimertinib (1 μM) in AXL-mediated osimertinib-resistant NSCLC cell lines in vitro. We demonstrated that brigatinib had a potential ability to bind AXL kinase protein and further inhibit its downstream pathways in NSCLC cell lines. Furthermore, we revealed that brigatinib might decrease AXL expression through increasing K48-linked ubiquitination of AXL and promoting AXL degradation in HCC827OR cells and PC-9OR cells. In AXL-high expression osimertinib-resistant PC-9OR and HCC827OR cells derived xenograft mouse models, administration of osimertinib (10 mg·kg−1·d−1) alone for 3 weeks had no effect, and administration of brigatinib (25 mg·kg−1·d−1) alone caused a minor inhibition on the tumor growth; whereas combination of osimertinib and brigatinib caused marked tumor shrinkages. We concluded that brigatinib may be a promising clinical strategy for enhancing osimertinib efficacy in AXL-mediated osimertinib-resistant NSCLC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Acquired resistance caused by changes of AXL overexpression in EGFR-mutated NSCLC cells.
Fig. 2: Compound screening identified brigatinib as a potent inhibitor of AXL.
Fig. 3: Brigatinib and osimertinib combination synergistically decreases the survival of osimertinib-resistant NSCLC cell lines.
Fig. 4: Brigatinib can potentially bind to AXL.
Fig. 5: The combination of brigatinib and osimertinib promotes AXL degradation.
Fig. 6: The combination of osimertinib with brigatinib effectively inhibits the growth of osimertinib-resistant NSCLC xenografts.

Similar content being viewed by others

References

  1. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378:113–25.

    Article  CAS  PubMed  Google Scholar 

  2. Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y, et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med. 2020;382:41–50.

    Article  CAS  PubMed  Google Scholar 

  3. Papadimitrakopoulou VA, Mok TS, Han JY, Ahn MJ, Delmonte A, Ramalingam SS, et al. Osimertinib versus platinum-pemetrexed for patients with EGFR T790M advanced NSCLC and progression on a prior EGFR-tyrosine kinase inhibitor: AURA3 overall survival analysis. Ann Oncol. 2020;31:1536–44.

    Article  CAS  PubMed  Google Scholar 

  4. Lee J, Kim HS, Lee B, Kim HK, Sun JM, Ahn JS, et al. Genomic landscape of acquired resistance to third-generation EGFR tyrosine kinase inhibitors in EGFR T790M-mutant non-small cell lung cancer. Cancer. 2020;126:2704–12.

    Article  CAS  PubMed  Google Scholar 

  5. Minari R, Bordi P, La Monica S, Squadrilli A, Leonetti A, Bottarelli L, et al. Concurrent acquired BRAF V600E mutation and MET amplification as resistance mechanism of first-line osimertinib treatment in a patient with EGFR-mutated NSCLC. J Thorac Oncol. 2018;13:e89–e91.

    Article  PubMed  Google Scholar 

  6. Le X, Puri S, Negrao MV, Nilsson MB, Robichaux J, Boyle T, et al. Landscape of EGFR-dependent and -independent resistance mechanisms to osimertinib and continuation therapy beyond progression in EGFR-mutant NSCLC. Clin Cancer Res. 2018;24:6195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun SY. Taking early preventive interventions to manage the challenging issue of acquired resistance to third-generation EGFR inhibitors. Chin Med J Pulm Crit Care Med. 2023;1:3–10.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Taniguchi H, Yamada T, Wang R, Tanimura K, Adachi Y, Nishiyama A, et al. AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells. Nat Commun. 2019;10:259.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. Okura N, Nishioka N, Yamada T, Taniguchi H, Tanimura K, Katayama Y, et al. ONO-7475, a novel AXL inhibitor, suppresses the adaptive resistance to initial EGFR-TKI treatment in EGFR-mutated non-small cell lung cancer. Clin Cancer Res. 2020;26:2244–56.

    Article  CAS  PubMed  Google Scholar 

  10. Kim D, Bach DH, Fan YH, Luu TT, Hong JY, Park HJ, et al. AXL degradation in combination with EGFR-TKI can delay and overcome acquired resistance in human non-small cell lung cancer cells. Cell Death Dis. 2019;10:361.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu YN, Tsai MF, Wu SG, Chang TH, Tsai TH, Gow CH, et al. Acquired resistance to EGFR tyrosine kinase inhibitors is mediated by the reactivation of STC2/JUN/AXL signaling in lung cancer. Int J Cancer. 2019;145:1609–24.

    Article  CAS  PubMed  Google Scholar 

  12. Yoshimura A, Yamada T, Serizawa M, Uehara H, Tanimura K, Okuma Y, et al. High levels of AXL expression in untreated EGFR-mutated non-small cell lung cancer negatively impacts the use of osimertinib. Cancer Sci. 2023;114:606–18.

    Article  CAS  PubMed  Google Scholar 

  13. Namba K, Shien K, Takahashi Y, Torigoe H, Sato H, Yoshioka T, et al. Activation of AXL as a preclinical acquired resistance mechanism against osimertinib treatment in EGFR-mutant non-small cell lung cancer cells. Mol Cancer Res. 2019;17:499–507.

    Article  CAS  PubMed  Google Scholar 

  14. Lei T, Xu T, Zhang N, Zou X, Kong Z, Wei C, et al. Anlotinib combined with osimertinib reverses acquired osimertinib resistance in NSCLC by targeting the c-MET/MYC/AXL axis. Pharmacol Res. 2023;188:106668.

    Article  CAS  PubMed  Google Scholar 

  15. Noronha A, Belugali Nataraj N, Lee JS, Zhitomirsky B, Oren Y, Oster S, et al. AXL and error-prone DNA replication confer drug resistance and offer strategies to treat EGFR-mutant lung cancer. Cancer Discov. 2022;12:2666–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taverna JA, Hung CN, DeArmond DT, Chen M, Lin CL, Osmulski PA, et al. Single-cell proteomic profiling identifies combined AXL and JAK1 inhibition as a novel therapeutic strategy for lung cancer. Cancer Res. 2020;80:1551–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhalla S, Fattah FJ, Ahn C, Williams J, Macchiaroli A, Padro J, et al. Phase 1 trial of bemcentinib (BGB324), a first-in-class, selective AXL inhibitor, with docetaxel in patients with previously treated advanced non-small cell lung cancer. Lung Cancer. 2023;182:107291.

    Article  CAS  PubMed  Google Scholar 

  18. Yang YM, Jang Y, Lee SH, Kang B, Lim SM. AXL/MET dual inhibitor, CB469, has activity in non-small cell lung cancer with acquired resistance to EGFR TKI with AXL or MET activation. Lung Cancer. 2020;146:70–7.

    Article  PubMed  Google Scholar 

  19. Han R, Hao S, Lu C, Zhang C, Lin C, Li L, et al. Aspirin sensitizes osimertinib-resistant NSCLC cells in vitro and in vivo via Bim-dependent apoptosis induction. Mol Oncol. 2020;14:1152–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu C, Wei Y, Wei X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer. 2019;18:153.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lotsberg ML, Wnuk-Lipinska K, Terry S, Tan TZ, Lu N, Trachsel-Moncho L, et al. AXL targeting abrogates autophagic flux and induces immunogenic cell death in drug-resistant cancer cells. J Thorac Oncol. 2020;15:973–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Engelsen AST, Lotsberg ML, Abou Khouzam R, Thiery JP, Lorens JB, Chouaib S, et al. Dissecting the role of AXL in cancer immune escape and resistance to immune checkpoint inhibition. Front Immunol. 2022;13:869676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Terry S, Dalban C, Rioux-Leclercq N, Adam J, Meylan M, Buart S, et al. Association of AXL and PD-L1 expression with clinical outcomes in patients with advanced renal cell carcinoma treated with PD-1 blockade. Clin Cancer Res. 2021;27:6749–60.

    Article  CAS  PubMed  Google Scholar 

  24. Nyakas M, Fleten KG, Haugen MH, Engedal N, Sveen C, Farstad IN, et al. AXL inhibition improves BRAF-targeted treatment in melanoma. Sci Rep. 2022;12:5076.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zaman A, Bivona TG. Targeting AXL in NSCLC. Lung Cancer. 2021;12:67–79.

    PubMed  PubMed Central  Google Scholar 

  26. Hoel A, Osman T, Hoel F, Elsaid H, Chen T, Landolt L, et al. Axl-inhibitor bemcentinib alleviates mitochondrial dysfunction in the unilateral ureter obstruction murine model. J Cell Mol Med. 2021;25:7407–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Giles KM, Kalinowski FC, Candy PA, Epis MR, Zhang PM, Redfern AD, et al. Axl mediates acquired resistance of head and neck cancer cells to the epidermal growth factor receptor inhibitor erlotinib. Mol Cancer Ther. 2013;12:2541–58.

    Article  CAS  PubMed  Google Scholar 

  28. Holland SJ, Pan A, Franci C, Hu Y, Chang B, Li W, et al. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res. 2010;70:1544–54.

    Article  CAS  PubMed  Google Scholar 

  29. Woo SM, Min KJ, Seo SU, Kim S, Kubatka P, Park JW, et al. Axl inhibitor R428 enhances TRAIL-mediated apoptosis through downregulation of c-FLIP and survivin expression in renal carcinoma. Int J Mol Sci. 2019;20:3253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yeo XH, Sundararajan V, Wu Z, Phua ZJC, Ho YY, Peh KLE, et al. The effect of inhibition of receptor tyrosine kinase AXL on DNA damage response in ovarian cancer. Commun Biol. 2023;6:660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu C, Han Y, Xu S, Wang R, Yue M, Tian Y, et al. Design, synthesis and biological evaluation of new Axl kinase inhibitors containing 1,3,4-oxadiazole acetamide moiety as novel linker. Eur J Med Chem. 2020;186:111867.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang YX, Knyazev PG, Cheburkin YV, Sharma K, Knyazev YP, Orfi L, et al. AXL is a potential target for therapeutic intervention in breast cancer progression. Cancer Res. 2008;68:1905–15.

    Article  CAS  PubMed  Google Scholar 

  33. Park IK, Mundy-Bosse B, Whitman SP, Zhang X, Warner SL, Bearss DJ, et al. Receptor tyrosine kinase Axl is required for resistance of leukemic cells to FLT3-targeted therapy in acute myeloid leukemia. Leukemia. 2015;29:2382–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fedorenko IV, Fang B, Koomen JM, Gibney GT, Smalley KS. Amuvatinib has cytotoxic effects against NRAS-mutant melanoma but not BRAF-mutant melanoma. Melanoma Res. 2014;24:448–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Camidge DR, Kim HR, Ahn MJ, Yang JCH, Han JY, Hochmair MJ, et al. Brigatinib versus crizotinib in ALK inhibitor-naive advanced ALK-positive NSCLC: final results of phase 3 ALTA-1L trial. J Thorac Oncol. 2021;16:2091–108.

    Article  CAS  PubMed  Google Scholar 

  36. Camidge DR, Kim HR, Ahn MJ, Yang JC, Han JY, Lee JS, et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med. 2018;379:2027–39.

    Article  CAS  PubMed  Google Scholar 

  37. Bedi S, Khan SA, AbuKhader MM, Alam P, Siddiqui NA, Husain A. A comprehensive review on Brigatinib - A wonder drug for targeted cancer therapy in non-small cell lung cancer. Saudi Pharmacol J. 2018;26:755–63.

    Article  Google Scholar 

  38. Hanley MJ, D’Arcangelo M, Felip E, Garrido P, Zhu J, Ye M, et al. A phase 1 drug-drug interaction study between brigatinib and the CYP3A substrate midazolam in patients with ALK-positive or ROS1-positive solid tumors. J Clin Pharmacol. 2023;63:583–92.

    Article  CAS  Google Scholar 

  39. Uchibori K, Inase N, Araki M, Kamada M, Sato S, Okuno Y, et al. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer. Nat Commun. 2017;8:14768.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Yang N, Zhang Y, Li L, Han R, Zhu M, et al. Effective treatment of lung adenocarcinoma harboring EGFR-activating mutation, T790M, and cis-C797S triple mutations by brigatinib and cetuximab combination therapy. J Thorac Oncol. 2020;15:1369–75.

    Article  CAS  PubMed  Google Scholar 

  41. Jiang XM, Xu YL, Yuan LW, Zhang LL, Huang MY, Ye ZH, et al. TGFbeta2-mediated epithelial-mesenchymal transition and NF-kappaB pathway activation contribute to osimertinib resistance. Acta Pharmacol Sin. 2021;42:451–9.

    Article  CAS  PubMed  Google Scholar 

  42. Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 2017;551:247–50.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang L, Fu H, Song L, Wu Z, Yu J, Guo Q, et al. Overcoming AZD9291 resistance and metastasis of NSCLC via ferroptosis and multitarget interference by nanocatalytic sensitizer plus AHP-DRI-12. Small. 2023;19:e2204133.

    Article  PubMed  Google Scholar 

  44. Hanniford D, Ulloa-Morales A, Karz A, Berzoti-Coelho MG, Moubarak RS, Sánchez-Sendra B, et al. Epigenetic silencing of CDR1as drives IGF2BP3-mediated melanoma invasion and metastasis. Cancer Cell. 2020;37:55–70.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant numbers 81972189 and 82172623], Chongqing Technology Innovation and Application Development Special Key Project[CSTB2023TIAD-STX0003], Clinical medical technology innovation ability training program [grant numbers 2019CXLCA003], Chongqing Municipal Bureau of Science and Technology[cstc2021jscx-xczxX0015], Clinical Medical Research Talent Training Program of Army Medical University [grant numbers 2018XLC1015], Chongqing Science and Technology Commission [grant numbers cstc2021jcyj-msxmX0014, CSTB2022NSCQ-MSX0941] and Chongqing graduate scientific research innovation project [grant numbers CYB22277].

Author information

Authors and Affiliations

Authors

Contributions

RH, CHL and CH, contributed equally to this work; YH conceptualized the idea and designed the study; RH and CHL development of methodology; RH, CHL, CH, CY L, YYD, DW, WLJ, GQY, JK, data acquisition; RH, CHL and CH, analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis); RH, CHL and YH writing, reviewing, and revising the manuscript; RH, CHL and CH administrative, technical, or material support (i.e., reporting or organizing data, constructing databases); RH, YH study supervision. All authors have read and approved this article.

Corresponding author

Correspondence to Yong He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Ethics Committees of the Daping Hospital and Army Medical University and conformed to the tenets of the Declaration of Helsinki.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, R., Lu, Ch., Hu, C. et al. Brigatinib, a newly discovered AXL inhibitor, suppresses AXL-mediated acquired resistance to osimertinib in EGFR-mutated non-small cell lung cancer. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01237-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01237-4

Keywords

Search

Quick links