Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

α4 nicotinic receptors on GABAergic neurons mediate a cholinergic analgesic circuit in the substantia nigra pars reticulata

Summary

Nicotinic acetylcholine receptors (nAChRs) regulate pain pathways with various outcomes depending on receptor subtypes, neuron types, and locations. But it remains unknown whether α4β2 nAChRs abundantly expressed in the substantia nigra pars reticulata (SNr) have potential to mitigate hyperalgesia in pain states. We observed that injection of nAChR antagonists into the SNr reduced pain thresholds in naïve mice, whereas injection of nAChR agonists into the SNr relieved hyperalgesia in mice, subjected to capsaicin injection into the lower hind leg, spinal nerve injury, chronic constriction injury, or chronic nicotine exposure. The analgesic effects of nAChR agonists were mimicked by optogenetic stimulation of cholinergic inputs from the pedunculopontine nucleus (PPN) to the SNr, but attenuated upon downregulation of α4 nAChRs on SNr GABAergic neurons and injection of dihydro-β-erythroidine into the SNr. Chronic nicotine-induced hyperalgesia depended on α4 nAChRs in SNr GABAergic neurons and was associated with the reduction of ACh release in the SNr. Either activation of α4 nAChRs in the SNr or optogenetic stimulation of the PPN-SNr cholinergic projection mitigated chronic nicotine-induced hyperalgesia. Interestingly, mechanical stimulation-induced ACh release was significantly attenuated in mice subjected to either capsaicin injection into the lower hind leg or SNI. These results suggest that α4 nAChRs on GABAergic neurons mediate a cholinergic analgesic circuit in the SNr, and these receptors may be effective therapeutic targets to relieve hyperalgesia in acute and chronic pain, and chronic nicotine exposure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inhibition of nAChRs in the SNr reduces pain threshold in mice.
Fig. 2: Nicotine in the SNr mitigates hyperalgesia in acute and chronic pain mouse models.
Fig. 3: Activation of α4β2 nAChRs mitigates hyperalgesia in acute and chronic pain.
Fig. 4: α4 nAChRs in SNr GABAergic neurons modulate pain states in mice.
Fig. 5: Stimulating the PPN-SNr projection mitigates hyperalgesia in acute pain.
Fig. 6: The role of α4 nAChRs on SNr GABAergic neurons in chronic nicotine-induced hyperalgesia in mice.
Fig. 7: Chronic nicotine reduces ACh release in the SNr.
Fig. 8: Pain stimulation-induced ACh release in the SNr is reduced in capsaicin nociceptive pain and neuropathic pain.

Similar content being viewed by others

References

  1. Busse JW, Wang L, Kamaleldin M, Craigie S, Riva JJ, Montoya L, et al. Opioids for chronic noncancer pain: a systematic review and meta-analysis. JAMA. 2018;320:2448–60.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hylands-White N, Duarte RV, Raphael JH. An overview of treatment approaches for chronic pain management. Rheumatol Int. 2017;37:29–42.

    Article  CAS  PubMed  Google Scholar 

  3. Noori A, Sadeghirad B, Wang L, Siemieniuk RAC, Shokoohi M, Kum E, et al. Comparative benefits and harms of individual opioids for chronic non-cancer pain: a systematic review and network meta-analysis of randomised trials. Br J Anaesth. 2022;129:394–406.

    Article  CAS  PubMed  Google Scholar 

  4. Higgins C, Smith BH, Matthews K. Evidence of opioid-induced hyperalgesia in clinical populations after chronic opioid exposure: a systematic review and meta-analysis. Br J Anaesth. 2019;122:e114–e26.

    Article  CAS  PubMed  Google Scholar 

  5. Koller G, Schwarzer A, Halfter K, Soyka M. Pain management in opioid maintenance treatment. Expert Opin Pharmacother. 2019;20:1993–2005.

    Article  CAS  PubMed  Google Scholar 

  6. Noori SA, Aiyer R, Yu J, White RS, Mehta N, Gulati A. Nonopioid versus opioid agents for chronic neuropathic pain, rheumatoid arthritis pain, cancer pain and low back pain. Pain Manag. 2019;9:205–16.

    Article  PubMed  Google Scholar 

  7. Dulawa SC, Janowsky DS. Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol Psychiatry. 2019;24:694–709.

    Article  CAS  PubMed  Google Scholar 

  8. Naser PV, Kuner R. Molecular, cellular and circuit basis of cholinergic modulation of pain. Neuroscience. 2018;387:135–48.

    Article  CAS  PubMed  Google Scholar 

  9. Schechtmann G, Song Z, Ultenius C, Meyerson BA, Linderoth B. Cholinergic mechanisms involved in the pain relieving effect of spinal cord stimulation in a model of neuropathy. Pain. 2008;139:136–45.

    Article  CAS  PubMed  Google Scholar 

  10. Umana IC, Daniele CA, McGehee DS. Neuronal nicotinic receptors as analgesic targets: it’s a winding road. Biochem Pharmacol. 2013;86:1208–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Umana IC, Daniele CA, Miller BA, Abburi C, Gallagher K, Brown MA, et al. Nicotinic modulation of descending pain control circuitry. Pain. 2017;158:1938–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ji YW, Shen ZL, Zhang X, Zhang K, Jia T, Xu X, et al. Plasticity in ventral pallidal cholinergic neuron-derived circuits contributes to comorbid chronic pain-like and depression-like behaviour in male mice. Nat Commun. 2023;14:2182.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marks MJ, Grady SR, Salminen O, Paley MA, Wageman CR, McIntosh JM, et al. α6β2*-subtype nicotinic acetylcholine receptors are more sensitive than α4β2*-subtype receptors to regulation by chronic nicotine administration. J Neurochem. 2014;130:185–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P, Labarca C, et al. Nicotine activation of α4* receptors: sufficient for reward, tolerance, and sensitization. Science. 2004;306:1029–32.

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Wooltorton JR, Pidoplichko VI, Broide RS, Dani JA. Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. J Neurosci. 2003;23:3176–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu J. Understanding of nicotinic acetylcholine receptors. Acta Pharmacol Sin. 2009;30:653–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xiao C, Zhou CY, Jiang JH, Yin C. Neural circuits and nicotinic acetylcholine receptors mediate the cholinergic regulation of midbrain dopaminergic neurons and nicotine dependence. Acta Pharmacol Sin. 2020;41:1–9.

    Article  CAS  PubMed  Google Scholar 

  18. Nashmi R, Xiao C, Deshpande P, McKinney S, Grady SR, Whiteaker P, et al. Chronic nicotine cell specifically upregulates functional α4* nicotinic receptors: basis for both tolerance in midbrain and enhanced long-term potentiation in perforant path. J Neurosci. 2007;27:8202–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buisson B, Bertrand D. Chronic exposure to nicotine upregulates the human α4β2 nicotinic acetylcholine receptor function. J Neurosci. 2001;21:1819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McGranahan TM, Patzlaff NE, Grady SR, Heinemann SF, Booker TK. α4β2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief. J Neurosci. 2011;31:10891–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, et al. Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature. 1998;391:173–7.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Xiao C, Nashmi R, McKinney S, Cai H, McIntosh JM, Lester HA. Chronic nicotine selectively enhances α4β2* nicotinic acetylcholine receptors in the nigrostriatal dopamine pathway. J Neurosci. 2009;29:12428–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C, et al. Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci. 2003;23:7820–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klink R, de Kerchove d’Exaerde A, Zoli M, Changeux JP. Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci. 2001;21:1452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Estakhr J, Abazari D, Frisby K, McIntosh JM, Nashmi R. Differential control of dopaminergic excitability and locomotion by cholinergic inputs in mouse substantia nigra. Curr Biol. 2017;27:1900–14.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Metaxas A, Bailey A, Barbano MF, Galeote L, Maldonado R, Kitchen I. Differential region-specific regulation of α4β2* nAChRs by self-administered and non-contingent nicotine in C57BL/6J mice. Addict Biol. 2010;15:464–79.

    Article  CAS  PubMed  Google Scholar 

  27. Miwa JM, Freedman R, Lester HA. Neural systems governed by nicotinic acetylcholine receptors: emerging hypotheses. Neuron. 2011;70:20–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yin C, Jia T, Luan Y, Zhang X, Xiao C, Zhou C. A nigra-subthalamic circuit is involved in acute and chronic pain states. Pain. 2022;163:1952–66.

    Article  CAS  PubMed  Google Scholar 

  29. Jia T, Wang YD, Chen J, Zhang X, Cao JL, Xiao C, et al. A nigro-subthalamo-parabrachial pathway modulates pain-like behaviors. Nat Commun. 2022;13:7756.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. WHO report on the global tobacco epidemic 2021: addressing new and emerging products. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO.

  31. Wipfli H, Samet JM. One hundred years in the making: the global tobacco epidemic. Annu Rev Public Health. 2016;37:149–66.

    Article  PubMed  Google Scholar 

  32. De Biasi M, Dani JA. Reward, addiction, withdrawal to nicotine. Annu Rev Neurosci. 2011;34:105–30.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu J. Double target concept for smoking cessation. Acta Pharmacol Sin. 2010;31:1015–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Anderson KL, Pinkerton KE, Uyeminami D, Simons CT, Carstens MI, Carstens E. Antinociception induced by chronic exposure of rats to cigarette smoke. Neurosci Lett. 2004;366:86–91.

    Article  CAS  PubMed  Google Scholar 

  35. Shi Y, Weingarten TN, Mantilla CB, Hooten WM, Warner DO. Smoking and pain: pathophysiology and clinical implications. Anesthesiology. 2010;113:977–92.

    Article  CAS  PubMed  Google Scholar 

  36. Alfonso-Rodriguez J, Wang S, Zeng X, Candiotti KA, Zhang Y. Mechanism of electroacupuncture analgesia on nicotine withdrawal-induced hyperalgesia in a rat model. Evid Based Complement Altern Med. 2022;2022:7975803.

    Article  Google Scholar 

  37. Luan Y, Tang D, Wu H, Gu W, Wu Y, Cao JL, et al. Reversal of hyperactive subthalamic circuits differentially mitigates pain hypersensitivity phenotypes in parkinsonian mice. Proc Natl Acad Sci USA. 2020;117:10045–54.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. 2nd, Editor. (Academic Press, San Diego, 2001).

  39. Wang D, Liu P, Mao X, Zhou Z, Cao T, Xu J, et al. Task-demand-dependent neural representation of odor information in the olfactory bulb and posterior piriform cortex. J Neurosci. 2019;39:10002–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu H, Yan X, Tang D, Gu W, Luan Y, Cai H, et al. Internal states influence the representation and modulation of food intake by subthalamic neurons. Neurosci Bull. 2020;36:1355–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang YK, Lu YG, Zhao X, Zhang JB, Zhang FM, Chen Y, et al. Cytokine activin C ameliorates chronic neuropathic pain in peripheral nerve injury rodents by modulating the TRPV1 channel. Br J Pharmacol. 2020;177:5642–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou C, Luo ZD. Nerve injury-induced calcium channel α2δ1 protein dysregulation leads to increased pre-synaptic excitatory input into deep dorsal horn neurons and neuropathic allodynia. Eur J Pain. 2015;19:1267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dixon WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol. 1980;20:441–62.

    Article  CAS  PubMed  Google Scholar 

  44. Treede RD, Meyer RA, Raja SN, Campbell JN. Peripheral and central mechanisms of cutaneous hyperalgesia. Prog Neurobiol. 1992;38:397–421.

    Article  CAS  PubMed  Google Scholar 

  45. Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 2000;87:149–58.

    Article  PubMed  Google Scholar 

  46. Zhang H, Qian YL, Li C, Liu D, Wang L, Wang XY, et al. Brain-derived neurotrophic factor in the mesolimbic reward circuitry mediates nociception in chronic neuropathic pain. Biol Psychiatry. 2017;82:608–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang HR, Hu SW, Zhang S, Song Y, Wang XY, Wang L, et al. KCNQ channels in the mesolimbic reward circuit regulate nociception in chronic pain in mice. Neurosci Bull. 2021;37:597–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou C, Gu W, Wu H, Yan X, Deshpande P, Xiao C, et al. Bidirectional dopamine modulation of excitatory and inhibitory synaptic inputs to subthalamic neuron subsets containing α4β2 or α7 nAChRs. Neuropharmacology. 2019;148:220–8.

    Article  CAS  PubMed  Google Scholar 

  49. Fan JP, Geng HZ, Ji YW, Jia T, Treweek JB, Li AA, et al. Age-dependent alterations in key components of the nigrostriatal dopaminergic system and distinct motor phenotypes. Acta Pharmacol Sin. 2022;43:862–75.

    Article  CAS  PubMed  Google Scholar 

  50. Xiao C, Cho JR, Zhou C, Treweek JB, Chan K, McKinney SL, et al. Cholinergic mesopontine signals govern locomotion and reward through dissociable midbrain pathways. Neuron. 2016;90:333–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grace AA, Onn SP. Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci. 1989;9:3463–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lacey MG, Mercuri NB, North RA. Two cell types in rat substantia nigra zona compacta distinguished by membrane properties and the actions of dopamine and opioids. J Neurosci. 1989;9:1233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Benarroch EE. Pedunculopontine nucleus: functional organization and clinical implications. Neurology. 2013;80:1148–55.

    Article  PubMed  Google Scholar 

  54. Mena-Segovia J, Bolam JP. Rethinking the pedunculopontine nucleus: from cellular organization to function. Neuron. 2017;94:7–18.

    Article  CAS  PubMed  Google Scholar 

  55. Xiao C, Miwa JM, Henderson BJ, Wang Y, Deshpande P, McKinney SL, et al. Nicotinic receptor subtype-selective circuit patterns in the subthalamic nucleus. J Neurosci. 2015;35:3734–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jing M, Li Y, Zeng J, Huang P, Skirzewski M, Kljakic O, et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat Methods. 2020;17:1139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jing M, Zhang P, Wang G, Feng J, Mesik L, Zeng J, et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat Biotechnol. 2018;36:726–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Carstens E, Carstens MI. Sensory effects of nicotine and tobacco. Nicotine Tob Res. 2022;24:306–15.

    Article  CAS  PubMed  Google Scholar 

  59. Liu D, Tang QQ, Wang D, Song SP, Yang XN, Hu SW, et al. Mesocortical BDNF signaling mediates antidepressive-like effects of lithium. Neuropsychopharmacology. 2020;45:1557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu D, Tang QQ, Yin C, Song Y, Liu Y, Yang JX, et al. Brain-derived neurotrophic factor-mediated projection-specific regulation of depressive-like and nociceptive behaviors in the mesolimbic reward circuitry. Pain. 2018;159:175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lester HA, Xiao C, Srinivasan R, Son CD, Miwa J, Pantoja R, et al. Nicotine is a selective pharmacological chaperone of acetylcholine receptor number and stoichiometry. Implications for drug discovery. AAPS J. 2009;11:167–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nashmi R, Lester H. Cell autonomy, receptor autonomy, and thermodynamics in nicotine receptor up-regulation. Biochem Pharmacol. 2007;74:1145–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82071231 (CX), 81971038 (CYZ), 82171235 (CYZ), 82271293 (CX), 82371242 (CYZ)), the Fund for Jiangsu Province Specially Appointed Professor (CX, CYZ), the Natural Science Foundation of Jiangsu Province (BK20211349, CYZ), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (23KJA320006 (CYZ), 23KJA320007, (CX)), and the Leadership Program in Xuzhou Medical University (JBGS202203, CX). We thank Terrence Z.Y. Xiao for data organization and grammar check for the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CX, CYZ and SL designed the experiments. CX and CYZ supervised this research. YH, JQZ, YWL and YJ performed mouse survival surgeries and morphological experiments. YH, JQZ, SYL, YWL, CY and YJ performed behavioral tests and managed the mouse colony. YWJ and HZG collected and analyzed electrophysiological data. CX, CYZ and YH wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Chun-yi Zhou or Cheng Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Zhang, Jq., Ji, Yw. et al. α4 nicotinic receptors on GABAergic neurons mediate a cholinergic analgesic circuit in the substantia nigra pars reticulata. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01234-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01234-7

Keywords

Search

Quick links