Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autoimmune diseases: targets, biology, and drug discovery

Abstract

Autoimmune diseases (AIDs) arise from a breakdown in immunological self-tolerance, wherein the adaptive immune system mistakenly attacks healthy cells, tissues and organs. AIDs impose excessive treatment costs and currently rely on non-specific and universal immunosuppression, which only offer symptomatic relief without addressing the underlying causes. AIDs are driven by autoantigens, targeting the autoantigens holds great promise in transforming the treatment of these diseases. To achieve this goal, a comprehensive understanding of the pathogenic mechanisms underlying different AIDs and the identification of specific autoantigens are critical. In this review, we categorize AIDs based on their underlying causes and compile information on autoantigens implicated in each disease, providing a roadmap for the development of novel immunotherapy regimens. We will focus on type 1 diabetes (T1D), which is an autoimmune disease characterized by irreversible destruction of insulin-producing β cells in the Langerhans islets of the pancreas. We will discuss insulin as possible autoantigen of T1D and its role in T1D pathogenesis. Finally, we will review current treatments of TID and propose a potentially effective immunotherapy targeting autoantigens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The pathogenesis of autoimmune disease.
Fig. 2: Hypothesis of autoantigen-based therapy for autoimmune diseases.
Fig. 3: Risk factors and disease progression stage of T1D.
Fig. 4: Mechanism of β cell death mediated by T cells in T1D.
Fig. 5: Treatment strategies for type T1D.

Similar content being viewed by others

References

  1. Conrad N, Misra S, Verbakel JY, Verbeke G, Molenberghs G, Taylor PN, et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. Lancet. 2023;401:1878–90.

    Article  PubMed  Google Scholar 

  2. Hampton HR, Chtanova T. Lymphatic migration of immune cells. Front Immunol. 2019;10:1168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Griffin JD, Song JY, Sestak JO, DeKosky BJ, Berkland CJ. Linking autoantigen properties to mechanisms of immunity. Adv Drug Deliv Rev. 2020;165:105–16.

    Article  PubMed  Google Scholar 

  4. Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther. 2023;8:235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burbelo PD, Iadarola MJ, Keller JM, Warner BM. Autoantibodies targeting intracellular and extracellular proteins in autoimmunity. Front Immunol. 2021;12:548469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gregory GA, Robinson TIG, Linklater SE, Wang F, Colagiuri S, de Beaufort C, et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol. 2022;10:741–60.

    Article  PubMed  Google Scholar 

  7. Mahase E. Type 1 diabetes: Global prevalence is set to double by 2040, study estimates. BMJ. 2022;378:o2289.

    Article  PubMed  Google Scholar 

  8. Katsarou A, Gudbjornsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. Type 1 diabetes mellitus. Nat Rev Dis Prim. 2017;3:1–17.

    Google Scholar 

  9. Syed FZ. Type 1 Diabetes Mellitus. Ann Intern Med. 2022;175:ITC33–ITC48.

    Article  PubMed  Google Scholar 

  10. Daneman D. Type 1 diabetes. Lancet (Lond, Engl). 2006;367:847–58.

    Article  CAS  Google Scholar 

  11. Norris JM, Johnson RK, Stene LC. Type 1 diabetes-early life origins and changing epidemiology. Lancet Diabetes Endocrinol. 2020;8:226–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol. 2019;15:635–50.

    Article  CAS  PubMed  Google Scholar 

  13. Geravandi S, Liu H, Maedler K. Enteroviruses and T1D: is it the virus, the genes or both which cause T1D. Microorganisms. 2020;8:1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018;391:2449–62.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Karges B, Prinz N, Placzek K, Datz N, Papsch M, Strier U, et al. A comparison of familial and sporadic type 1 diabetes among young patients. Diabetes Care. 2021;44:1116–24.

    Article  CAS  PubMed  Google Scholar 

  16. Sims EK, Besser REJ, Dayan C, Geno Rasmussen C, Greenbaum C, Griffin KJ, et al. Screening for type 1 diabetes in the general population: a status report and perspective. Diabetes. 2022;71:610–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dayan CM, Besser RE, Oram RA, Hagopian W, Vatish M, Bendor-Samuel O, et al. Preventing type 1 diabetes in childhood. Science. 2021;373:506–10.

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Nekoua MP, Alidjinou EK, Hober D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol. 2022;18:503–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sano H, Imagawa A. Re-enlightenment of fulminant type 1 diabetes under the COVID-19 pandemic. Biology (Basel). 2022;11:1662.

    CAS  PubMed  Google Scholar 

  20. Del Chierico F, Rapini N, Deodati A, Matteoli MC, Cianfarani S, Putignani L. Pathophysiology of type 1 diabetes and gut microbiota role. Int J Mol Sci. 2022;23:14650.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Krischer JP, Liu X, Vehik K, Akolkar B, Hagopian WA, Rewers MJ, et al. Predicting islet cell autoimmunity and type 1 diabetes: an 8-year TEDDY study progress report. Diabetes Care. 2019;42:1051–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562:589–94.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Warshauer JT, Bluestone JA, Anderson MS. New frontiers in the treatment of type 1 diabetes. Cell Metab. 2020;31:46–61.

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez-Calvo T, Richardson SJ, Pugliese A. Pancreas pathology during the natural history of type 1 diabetes. Curr Diab Rep. 2018;18:1–12.

    Article  Google Scholar 

  25. Boughton CK, Munro N, Whyte M. Targeting beta-cell preservation in the management of type 2 diabetes. Br J Diabetes. 2017;4:134–44.

  26. Pugliese A. Autoreactive T cells in type 1 diabetes. J Clin Invest. 2017;127:2881–91.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Foulis A, Farquharson M, Hardman R. Aberrant expression of class II major histocompatibility complex molecules by B cells and hyperexpression of class I major histocompatibility complex molecules by insulin containing islets in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1987;30:333–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coppieters KT, Dotta F, Amirian N, Campbell PD, Kay TW, Atkinson MA, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209:51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bender C, Rajendran S, Von Herrath MG. New insights into the role of autoreactive CD8 T cells and cytokines in human type 1 diabetes. Front Endocrinol. 2021;11:606434.

    Article  Google Scholar 

  30. Nagy N, de la Zerda A, Kaber G, Johnson PY, Hu KH, Kratochvil MJ, et al. Hyaluronan content governs tissue stiffness in pancreatic islet inflammation. J Biol Chem. 2018;293:567–78.

    Article  CAS  PubMed  Google Scholar 

  31. Bonifacio E, Achenbach P. Birth and coming of age of islet autoantibodies. Clin Exp Immunol. 2019;198:294–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Achenbach P, Bonifacio E, Koczwara K, Ziegler AG. Natural history of type 1 diabetes. Diabetes. 2005;54:S25–S31.

    Article  CAS  PubMed  Google Scholar 

  33. Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309:2473–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krischer JP, Lynch KF, Schatz DA, Ilonen J, Lernmark Å, Hagopian WA, et al. The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia. 2015;58:980–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pociot F, Lernmark Å. Genetic risk factors for type 1 diabetes. Lancet. 2016;387:2331–9.

    Article  CAS  PubMed  Google Scholar 

  36. Jacobsen LM, Haller MJ, Schatz DA. Understanding pre-type 1 diabetes: the key to prevention. Front Endocrinol. 2018;9:70.

    Article  Google Scholar 

  37. Culina S, Brezar V, Mallone R. Insulin and type 1 diabetes: immune connections. Eur J Endocrinol. 2013;168:R19–R31.

    Article  CAS  PubMed  Google Scholar 

  38. Wenzlau JM, Juhl K, Yu L, Moua O, Sarkar SA, Gottlieb P, et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci USA. 2007;104:17040–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakayama M, Abiru N, Moriyama H, Babaya N, Liu E, Miao D, et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature. 2005;435:220–3.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stadinski BD, Delong T, Reisdorph N, Reisdorph R, Powell RL, Armstrong M, et al. Chromogranin A is an autoantigen in type 1 diabetes. Nat Immunol. 2010;11:225–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baker RL, Delong T, Barbour G, Bradley B, Nakayama M, Haskins K. Cutting edge: CD4 T cells reactive to an islet amyloid polypeptide peptide accumulate in the pancreas and contribute to disease pathogenesis in nonobese diabetic mice. J Immunol. 2013;191:3990–4.

    Article  CAS  PubMed  Google Scholar 

  42. Wong FS, Karttunen J, Dumont C, Wen L, Visintin I, Pilip IM, et al. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat Med. 1999;5:1026–31.

    Article  CAS  PubMed  Google Scholar 

  43. Roep BO, Solvason N, Gottlieb PA, Abreu JR, Harrison LC, Eisenbarth GS, et al. Plasmid-encoded proinsulin preserves C-peptide while specifically reducing proinsulin-specific CD8+ T cells in type 1 diabetes. Sci Transl Med. 2013;5:191ra82.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Han B, Serra P, Amrani A, Yamanouchi J, Marée AF, Edelstein-Keshet L, et al. Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide. Nat Med. 2005;11:645–52.

    Article  CAS  PubMed  Google Scholar 

  45. Wenzlau J, Walter M, Gardner T, Frisch L, Yu L, Eisenbarth G, et al. Kinetics of the post-onset decline in zinc transporter 8 autoantibodies in type 1 diabetic human subjects. J Clin Endocrinol Metab. 2010;95:4712–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Prasad S, Kohm AP, McMahon JS, Luo X, Miller SD. Pathogenesis of NOD diabetes is initiated by reactivity to the insulin B chain 9-23 epitope and involves functional epitope spreading. J Autoimmun. 2012;39:347–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takeyama N, Ano Y, Wu G, Kubota N, Saeki K, Sakudo A, et al. Localization of insulinoma associated protein 2, IA-2 in mouse neuroendocrine tissues using two novel monoclonal antibodies. Life Sci. 2009;84:678–87.

    Article  CAS  PubMed  Google Scholar 

  48. Kracht MJL, van Lummel M, Nikolic T, Joosten AM, Laban S, van der Slik AR, et al. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nat Med. 2017;23:501–7.

    Article  CAS  PubMed  Google Scholar 

  49. Delong T, Wiles TA, Baker RL, Bradley B, Barbour G, Reisdorph R, et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science. 2016;351:711–4.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sperling MA, Laffel LM. Current management of glycemia in children with type 1 diabetes mellitus. N Engl J Med. 2022;386:1155–64.

    Article  PubMed  Google Scholar 

  51. Gregory JM, Cherrington AD, Moore DJ. The peripheral peril: injected insulin induces insulin insensitivity in type 1 diabetes. Diabetes. 2020;69:837–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gruessner RWG. The current state of clinical islet transplantation. Lancet Diabetes Endocrinol. 2022;10:476–8.

    Article  PubMed  Google Scholar 

  53. Chatenoud L, Bluestone JA. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat Rev Immunol. 2007;7:622–32.

    Article  CAS  PubMed  Google Scholar 

  54. Sims EK, Bundy BN, Stier K, Serti E, Lim N, Long SA, et al. Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci Transl Med. 2021;13:eabc8980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Orban T, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, et al. Costimulation modulation with abatacept in patients with recent-onset type 1 diabetes: follow-up 1 year after cessation of treatment. Diabetes Care. 2014;37:1069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Edner NM, Heuts F, Thomas N, Wang CJ, Petersone L, Kenefeck R, et al. Follicular helper T cell profiles predict response to costimulation blockade in type 1 diabetes. Nat Immunol. 2020;21:1244–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rigby MR, Harris KM, Pinckney A, DiMeglio LA, Rendell MS, Felner EI, et al. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest. 2016;125:3285–96.

    Article  Google Scholar 

  58. Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, Becker DJ, Gitelman SE, Goland R, et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med. 2009;361:2143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cabrera SM, Wang X, Chen YG, Jia S, Kaldunski ML, Greenbaum CJ, et al. Interleukin‐1 antagonism moderates the inflammatory state associated with type 1 diabetes during clinical trials conducted at disease onset. Eur J Immunol. 2016;46:1030–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Quattrin T, Haller MJ, Steck AK, Felner EI, Li Y, Xia Y, et al. Golimumab and beta-cell function in youth with new-onset type 1 diabetes. N Engl J Med. 2020;383:2007–17.

    Article  CAS  PubMed  Google Scholar 

  61. Rosenzwajg M, Salet R, Lorenzon R, Tchitchek N, Roux A, Bernard C, et al. Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia. 2020;63:1808–21.

    Article  CAS  PubMed  Google Scholar 

  62. Smith EL, Peakman M. Peptide immunotherapy for type 1 diabetes—clinical advances. Front Immunol. 2018;9:392.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015;7:315ra189.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Honaker Y, Hubbard N, Xiang Y, Fisher L, Hagin D, Sommer K, et al. Gene editing to induce FOXP3 expression in human CD4+ T cells leads to a stable regulatory phenotype and function. Sci Transl Med. 2020;12:eaay6422.

    Article  CAS  PubMed  Google Scholar 

  65. Michalak SS, Olewicz-Gawlik A, Rupa-Matysek J, Wolny-Rokicka E, Nowakowska E, Gil L. Autoimmune hemolytic anemia: current knowledge and perspectives. Immun Ageing. 2020;17:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Buerck JP, Burke DK, Schmidtke DW, Snyder TA, Papavassiliou D, O’Rear EA. A flow induced autoimmune response and accelerated senescence of red blood cells in cardiovascular devices. Sci Rep. 2019;9:19443.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arakawa T, Kobayashi-Yurugi T, Alguel Y, Iwanari H, Hatae H, Iwata M, et al. Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science. 2015;350:680–4.

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Kashiwagi H, Tomiyama Y. Pathophysiology and management of primary immune thrombocytopenia. Int J Hematol. 2013;98:24–33.

    Article  CAS  PubMed  Google Scholar 

  69. Li J, Sullivan JA, Ni H. Pathophysiology of immune thrombocytopenia. Curr Opin Hematol. 2018;25:373–81.

    Article  CAS  PubMed  Google Scholar 

  70. Pedchenko V, Bondar O, Fogo AB, Vanacore R, Voziyan P, Kitching AR, et al. Molecular architecture of the Goodpasture autoantigen in anti-GBM nephritis. N Engl J Med. 2010;363:343–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Duan J, Xu P, Luan X, Ji Y, He X, Song N, et al. Hormone- and antibody-mediated activation of the thyrotropin receptor. Nature. 2022;609:854–9.

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren J. Myasthenia gravis. Nat Rev Dis Prim. 2019;5:30.

    Article  PubMed  Google Scholar 

  73. Noridomi K, Watanabe G, Hansen MN, Han GW, Chen L. Structural insights into the molecular mechanisms of myasthenia gravis and their therapeutic implications. Elife. 2017;6:e23043.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Takahashi H, Iriki H, Asahina Y. T cell autoimmunity and immune regulation to desmoglein 3, a pemphigus autoantigen. J Dermatol. 2023;50:112–23.

    Article  CAS  PubMed  Google Scholar 

  75. Schmidt E, Zillikens D. Pemphigoid diseases. Lancet. 2013;381:320–32.

    Article  PubMed  Google Scholar 

  76. Miyazaki K, Abe Y, Iwanari H, Suzuki Y, Kikuchi T, Ito T, et al. Establishment of monoclonal antibodies against the extracellular domain that block binding of NMO-IgG to AQP4. J Neuroimmunol. 2013;260:107–16.

    Article  CAS  PubMed  Google Scholar 

  77. Mader S, Brimberg L. Aquaporin-4 water channel in the brain and its implication for health and disease. Cells. 2019;8:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sadler JE. Von Willebrand factor, ADAMTS13, and thrombotic thrombocytopenic purpura. Blood. 2008;112:11–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zheng X, Chung D, Takayama TK, Majerus EM, Sadler JE, Fujikawa K. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem. 2001;276:41059–63.

    Article  CAS  PubMed  Google Scholar 

  80. Mikasova L, De Rossi P, Bouchet D, Georges F, Rogemond V, Didelot A, et al. Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis. Brain. 2012;135:1606–21.

    Article  PubMed  Google Scholar 

  81. Dalmau J, Geis C, Graus F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev. 2017;97:839–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gibson LL, McKeever A, Coutinho E, Finke C, Pollak TA. Cognitive impact of neuronal antibodies: encephalitis and beyond. Transl Psychiatry. 2020;10:304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kayser C, Fritzler MJ. Autoantibodies in systemic sclerosis: unanswered questions. Front Immunol. 2015;6:167.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wolin SL, Reinisch KM. The Ro 60 kDa autoantigen comes into focus: interpreting epitope mapping experiments on the basis of structure. Autoimmun Rev. 2006;5:367–72.

    Article  CAS  PubMed  Google Scholar 

  85. Espinosa A, Hennig J, Ambrosi A, Anandapadmanaban M, Abelius MS, Sheng Y, et al. Anti-Ro52 autoantibodies from patients with Sjogren’s syndrome inhibit the Ro52 E3 ligase activity by blocking the E3/E2 interface. J Biol Chem. 2011;286:36478–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Reed JH, Gordon TP. Autoimmunity: Ro60-associated RNA takes its toll on disease pathogenesis. Nat Rev Rheumatol. 2016;12:136–8.

    Article  CAS  PubMed  Google Scholar 

  87. Park JW, Kim JH, Kim SE, Jung JH, Jang MK, Park SH, et al. Primary biliary cholangitis and primary sclerosing cholangitis: current knowledge of pathogenesis and therapeutics. Biomedicines. 2022;10:1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Arbour L, Rupps R, Field L, Ross P, Erikson A, Henderson H, et al. Characteristics of primary biliary cirrhosis in British Columbia’s First Nations population. Can J Gastroenterol. 2005;19:305–10.

    Article  PubMed  Google Scholar 

  89. Bourgonje AR, Vogl T, Segal E, Weersma RK. Antibody signatures in inflammatory bowel disease: current developments and future applications. Trends Mol Med. 2022;28:693–705.

    Article  CAS  PubMed  Google Scholar 

  90. Ali F, Rowley M, Jayakrishnan B, Teuber S, Gershwin ME, Mackay IR. Stiff-person syndrome (SPS) and anti-GAD-related CNS degenerations: protean additions to the autoimmune central neuropathies. J Autoimmun. 2011;37:79–87.

    Article  CAS  PubMed  Google Scholar 

  91. Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med. 2008;358:929–39.

    Article  CAS  PubMed  Google Scholar 

  92. Chan AT, Kollnberger SD, Wedderburn LR, Bowness P. Expansion and enhanced survival of natural killer cells expressing the killer immunoglobulin-like receptor KIR3DL2 in spondylarthritis. Arthritis Rheum. 2005;52:3586–95.

    Article  CAS  PubMed  Google Scholar 

  93. Quaden DH, De Winter LM, Somers V. Detection of novel diagnostic antibodies in ankylosing spondylitis: An overview. Autoimmun Rev. 2016;15:820–32.

    Article  CAS  PubMed  Google Scholar 

  94. Bowness P, Ridley A, Shaw J, Chan AT, Wong-Baeza I, Fleming M, et al. Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J Immunol. 2011;186:2672–80.

    Article  CAS  PubMed  Google Scholar 

  95. Kronbichler A, Lee KH, Denicolò S, Choi D, Lee H, Ahn D, et al. Immunopathogenesis of ANCA-associated vasculitis. Int J Mol Sci. 2020;21:7319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Paroli M, Gioia C, Accapezzato D. New insights into pathogenesis and treatment of ANCA-associated vasculitis: autoantibodies and beyond. Antibodies. 2023;12:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sorice M, Misasi R. Different domains of beta(2)-glycoprotein I play a role in autoimmune pathogenesis. Cell Mol Immunol. 2020;17:1210–1.

    Article  CAS  PubMed  Google Scholar 

  98. Weaver JC, Krilis SA, Giannakopoulos B. Oxidative post-translational modification of beta 2-glycoprotein I in the pathophysiology of the anti-phospholipid syndrome. Free Radic Biol Med. 2018;125:98–103.

    Article  CAS  PubMed  Google Scholar 

  99. Jelusic M, Sestan M, Giani T, Cimaz R. New insights and challenges associated with IgA vasculitis and IgA vasculitis with nephritis—is it time to change the paradigm of the most common systemic vasculitis in childhood? Front Pediatrics. 2022;10:853724.

    Article  Google Scholar 

  100. Sestan M, Jelusic M. Diagnostic and management strategies of IgA vasculitis nephritis/henoch-schönlein purpura nephritis in pediatric patients: current perspectives. Pediatr Health, Med Therapeutics. 2023;14:89–98.

    Article  CAS  Google Scholar 

  101. Fresquet M, Lockhart-Cairns MP, Rhoden SJ, Jowitt TA, Briggs DC, Baldock C, et al. Structure of PLA2R reveals presentation of the dominant membranous nephropathy epitope and an immunogenic patch. Proc Natl Acad Sci USA. 2022;119:e2202209119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Seifert L, Hoxha E, Eichhoff AM, Zahner G, Dehde S, Reinhard L, et al. The most N-terminal region of THSD7A is the predominant target for autoimmunity in THSD7A-associated membranous nephropathy. J Am Soc Nephrol. 2018;29:1536–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lohmann T, Hawa M, Leslie RDG, Lane R, Picard J, Londei M. Immune reactivity to glutamic acid decarboxylase 65 in stiff-man syndrome and type 1 diabetes mellitus. Lancet. 2000;356:31–35.

    Article  CAS  PubMed  Google Scholar 

  104. Elvers KT, Geoghegan I, Shoemark DK, Lampasona V, Bingley PJ, Williams AJK. The core cysteines, (C909) of islet antigen-2 and (C945) of islet antigen-2β, are crucial to autoantibody binding in type 1 diabetes. Diabetes. 2013;62:214–22.

    Article  CAS  PubMed  Google Scholar 

  105. Nakayama M, Beilke JN, Jasinski JM, Kobayashi M, Miao D, Li M, et al. Priming and effector dependence on insulin B:9-23 peptide in NOD islet autoimmunity. J Clin Invest. 2007;117:1835–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Skärstrand H, Lernmark Å, Vaziri-Sani F. Antigenicity and epitope specificity of ZnT8 autoantibodies in type 1 diabetes. Scand J Immunol. 2013;77:21–29.

    Article  PubMed  Google Scholar 

  107. McLaughlin KA, Richardson CC, Ravishankar A, Brigatti C, Liberati D, Lampasona V, et al. Identification of Tetraspanin-7 as a target of autoantibodies in type 1 diabetes. Diabetes. 2016;65:1690–8.

    Article  CAS  PubMed  Google Scholar 

  108. Nicholes N, Date A, Beaujean P, Hauk P, Kanwar M, Ostermeier M. Modular protein switches derived from antibody mimetic proteins. Protein Eng Des Sel. 2016;29:77–85.

    Article  CAS  PubMed  Google Scholar 

  109. Momin AA, Hameed UFS, Arold ST. Passenger sequences can promote interlaced dimers in a common variant of the maltose-binding protein. Sci Rep. 2019;9:20396.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Weil MT, Mobius W, Winkler A, Ruhwedel T, Wrzos C, Romanelli E, et al. Loss of myelin basic protein function triggers myelin breakdown in models of demyelinating diseases. Cell Rep. 2016;16:314–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. van Delft MAM, Huizinga TWJ. An overview of autoantibodies in rheumatoid arthritis. J Autoimmun. 2020;110:102392.

    Article  PubMed  Google Scholar 

  112. Kongkaew S, Yotmanee P, Rungrotmongkol T, Kaiyawet N, Meeprasert A, Kaburaki T, et al. Molecular dynamics simulation reveals the selective binding of human leukocyte antigen alleles associated with behcet’s disease. PLoS One. 2015;10:e0135575.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hu CJ, Pan JB, Song G, Wen XT, Wu ZY, Chen S, et al. Identification of novel biomarkers for Behcet disease diagnosis using human proteome microarray approach. Mol Cell Proteom. 2017;16:147–56.

    Article  CAS  Google Scholar 

  114. Takeno M. The association of Behçet’s syndrome with HLA-B51 as understood in 2021. Curr Opin Rheumatol. 2022;34:4–9.

    Article  CAS  PubMed  Google Scholar 

  115. Eriksson D, Royrvik EC, Aranda-Guillen M, Berger AH, Landegren N, Artaza H, et al. GWAS for autoimmune Addison’s disease identifies multiple risk loci and highlights AIRE in disease susceptibility. Nat Commun. 2021;12:959.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pallan PS, Wang C, Lei L, Yoshimoto FK, Auchus RJ, Waterman MR, et al. Human cytochrome P450 21A2, the major steroid 21-hydroxylase: structure of the enzyme· progesterone substrate complex and rate-limiting c–h bond cleavage. J Biol Chem. 2015;290:13128–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Seissler J, Schott M, Steinbrenner H, Peterson P, Scherbaum W. Autoantibodies to adrenal cytochrome P450 antigens in isolated Addison’s disease and autoimmune polyendocrine syndrome type II. Exp Clin Endocrinol Diabetes. 1999;107:208–13.

    Article  CAS  PubMed  Google Scholar 

  118. Takizawa S, Endo T, Wanjia X, Tanaka S, Takahashi M, Kobayashi T. HSP 10 is a new autoantigen in both autoimmune pancreatitis and fulminant type 1 diabetes. Biochem Biophys Res Commun. 2009;386:192–6.

    Article  CAS  PubMed  Google Scholar 

  119. Yokode M, Shiokawa M, Kodama Y. Review of diagnostic biomarkers in autoimmune pancreatitis: where are we now? Diagnostics. 2021;11:770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang KL, Tao M, Wei TJ, Wei R. Pancreatic beta cell regeneration induced by clinical and preclinical agents. World J Stem Cells. 2021;13:64–77.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by CAS Strategic Priority Research Program (XDB37030103 to HEX); Shanghai Municipal Science and Technology Major Project (2019SHZDZX02 to HEX); Shanghai Municipal Science and Technology Major Project (HEX); The National Natural Science Foundation of China (32130022, 82121005); the Lingang Laboratory Grant (LG-GG-202204-01 to HEX); the National Key R&D Program of China (2018YFA0507002 to HEX). Figures were drawn by using pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-jie Li, Jia Duan or H. Eric Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Sj., Wu, Yl., Chen, Jh. et al. Autoimmune diseases: targets, biology, and drug discovery. Acta Pharmacol Sin 45, 674–685 (2024). https://doi.org/10.1038/s41401-023-01207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01207-2

Keywords

Search

Quick links