Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sigma-1 receptor activation mediates the sustained antidepressant effect of ketamine in mice via increasing BDNF levels

Abstract

Sigma-1 receptor (S1R) is a unique multi-tasking chaperone protein in the endoplasmic reticulum. Since S1R agonists exhibit potent antidepressant-like activity, S1R has become a novel target for antidepression therapy. With a rapid and sustained antidepressant effect, ketamine may also interact with S1R. In this study, we investigated whether the antidepressant action of ketamine was related to S1R activation. Depression state was evaluated in the tail suspension test (TST) and a chronic corticosterone (CORT) procedure was used to induce despair-like behavior in mice. The neuronal activities and structural changes of pyramidal neurons in medial prefrontal cortex (mPFC) were assessed using fiber-optic recording and immunofluorescence staining, respectively. We showed that pharmacological manipulation of S1R modulated ketamine-induced behavioral effect. Furthermore, pretreatment with an S1R antagonist BD1047 (3 mg·kg−1·d−1, i.p., for 3 consecutive days) significantly weakened the structural and functional restoration of pyramidal neuron in mPFC caused by ketamine (10 mg·kg−1, i.p., once). Ketamine indirectly triggered the activation of S1R and subsequently increased the level of BDNF. Pretreatment with an S1R agonist SA4503 (1 mg·kg−1·d−1, i.p., for 3 consecutive days) enhanced the sustained antidepressant effect of ketamine, which was eliminated by knockdown of BDNF in mPFC. These results reveal a critical role of S1R in the sustained antidepressant effect of ketamine, and suggest that a combination of ketamine and S1R agonists may be more beneficial for depression patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pharmacological manipulation of S1R modulates the sustained antidepressant effect of ketamine.
Fig. 2: S1R is involved in ketamine-induced structural and functional restoration of mPFCPyr neurons.
Fig. 3: Analysis of interaction between ketamine and S1R.
Fig. 4: S1R plays an important role in ketamine-induced increase of BDNF.
Fig. 5: Pretreatment with S1R agonists augments the effects of ketamine via BDNF.

Similar content being viewed by others

References

  1. Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell. 2007;131:596–610.

    Article  CAS  PubMed  Google Scholar 

  2. Soriani O, Kourrich S. The Sigma-1 receptor: when adaptive regulation of cell electrical activity contributes to stimulant addiction and cancer. Front Neurosci. 2019;13:1186.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tsai SY, Chuang JY, Tsai MS, Wang XF, Xi ZX, Hung JJ, et al. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope. Proc Natl Acad Sci USA. 2015;112:E6562–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu NH, Ye Y, Wan BB, Yu YD, Liu C, Chen QJ. Emerging benefits: pathophysiological functions and target drugs of the Sigma-1 receptor in neurodegenerative diseases. Mol Neurobiol. 2021;58:5649–66.

    Article  CAS  PubMed  Google Scholar 

  5. Kourrich S, Hayashi T, Chuang JY, Tsai SY, Su TP, Bonci A. Dynamic interaction between Sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell. 2013;152:236–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kourrich S. Sigma-1 receptor and neuronal excitability. Handb Exp Pharmacol 2017;244:109–30.

    Article  CAS  PubMed  Google Scholar 

  7. Narita N, Hashimoto K, Tomitaka S, Minabe Y. Interactions of selective serotonin reuptake inhibitors with subtypes of sigma receptors in rat brain. Eur J Pharmacol. 1996;307:117–9.

    Article  CAS  PubMed  Google Scholar 

  8. Ishima T, Fujita Y, Hashimoto K. Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells. Eur J Pharmacol. 2014;727:167–73.

    Article  CAS  PubMed  Google Scholar 

  9. Peixoto C, Grande AJ, Mallmann MB, Nardi AE, Cardoso A, Veras AB. Dehydroepiandrosterone (DHEA) for depression: a systematic review and meta-analysis. CNS Neurol Disord Drug Targets. 2018;17:706–11.

    Article  CAS  PubMed  Google Scholar 

  10. Hayashi T, Tsai SY, Mori T, Fujimoto M, Su TP. Targeting ligand-operated chaperone sigma-1 receptors in the treatment of neuropsychiatric disorders. Expert Opin Ther Targets. 2011;15:557–77.

    Article  CAS  PubMed  Google Scholar 

  11. Sugimoto Y, Tagawa N, Kobayashi Y, Mitsui-Saito K, Hotta Y, Yamada J. Involvement of the sigma1 receptor in the antidepressant-like effects of fluvoxamine in the forced swimming test in comparison with the effects elicited by paroxetine. Eur J Pharmacol. 2012;696:96–100.

    Article  CAS  PubMed  Google Scholar 

  12. Duman RS. Ketamine and rapid-acting antidepressants: a new era in the battle against depression and suicide. F1000Res. 2018;7:F1000 Faculty Rev-659.

  13. Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554:317–22.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Shinohara R, Aghajanian GK, Abdallah CG. Neurobiology of the rapid-acting antidepressant effects of ketamine: impact and opportunities. Biol Psychiatry. 2021;90:85–95.

    Article  CAS  PubMed  Google Scholar 

  15. Robson MJ, Elliott M, Seminerio MJ, Matsumoto RR. Evaluation of sigma (σ) receptors in the antidepressant-like effects of ketamine in vitro and in vivo. Eur Neuropsychopharmacol. 2012;22:308–17.

    Article  CAS  PubMed  Google Scholar 

  16. Li YF. A hypothesis of monoamine (5-HT)–Glutamate/GABA long neural circuit: aiming for fast-onset antidepressant discovery. Pharmacol Ther. 2020;208:107494.

    Article  CAS  PubMed  Google Scholar 

  17. Duman RS, Shinohara R, Fogaça MV, Hare B. Neurobiology of rapid-acting antidepressants: convergent effects on GluA1-synaptic function. Mol Psychiatry. 2019;24:1816–32.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fogaça MV, Wu M, Li C, Li XY, Picciotto MR, Duman RS. Inhibition of GABA interneurons in the mPFC is sufficient and necessary for rapid antidepressant responses. Mol Psychiatry. 2021;26:3277–91.

    Article  PubMed  Google Scholar 

  19. Miller OH, Moran JT, Hall BJ. Two cellular hypotheses explaining the initiation of ketamine’s antidepressant actions: direct inhibition and disinhibition. Neuropharmacology. 2016;100:17–26.

    Article  CAS  PubMed  Google Scholar 

  20. Gourley SL, Taylor JR. Recapitulation and reversal of a persistent depression-like syndrome in rodents. Curr Protoc Neurosci. 2009;Chapter 9:Unit 9.32.

    PubMed  Google Scholar 

  21. Ma H, Li C, Wang J, Zhang X, Li M, Zhang R, et al. Amygdala-hippocampal innervation modulates stress-induced depressive-like behaviors through AMPA receptors. Proc Natl Acad Sci USA. 2021;118:e2019409118.

  22. Schmidt HR, Betz RM, Dror RO, Kruse AC. Structural basis for σ(1) receptor ligand recognition. Nat Struct Mol Biol. 2018;25:981–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ali M, Ali S, Khan M, Rashid U, Ahmad M, Khan A, et al. Synthesis, biological activities, and molecular docking studies of 2-mercaptobenzimidazole based derivatives. Bioorg Chem. 2018;80:472–9.

    Article  CAS  PubMed  Google Scholar 

  24. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008;36:D901–6.

    Article  CAS  PubMed  Google Scholar 

  25. Kaech S, Banker G. Culturing hippocampal neurons. Nat Protoc. 2006;1:2406–15.

    Article  CAS  PubMed  Google Scholar 

  26. Liu Q, Guo Q, Fang LP, Yao H, Scheller A, Kirchhoff F, et al. Specific detection and deletion of the sigma-1 receptor widely expressed in neurons and glial cells in vivo. J Neurochem. 2023;164:764–85.

    Article  CAS  PubMed  Google Scholar 

  27. Fuchikami M, Thomas A, Liu R, Wohleb ES, Land BB, DiLeone RJ, et al. Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions. Proc Natl Acad Sci USA. 2015;112:8106–11.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science. 2019;364:eaat8078.

  29. Chu UB, Ruoho AE. Sigma receptor binding assays. Curr Protoc Pharmacol. 2015;71:1.34.1–1.21.

    Article  PubMed  Google Scholar 

  30. Ren P, Wang JY, Chen HL, Chang HX, Zeng ZR, Li GX, et al. Sigma-1 receptor agonist properties that mediate the fast-onset antidepressant effect of hypidone hydrochloride (YL-0919). Eur J Pharmacol. 2023;946:175647.

    Article  CAS  PubMed  Google Scholar 

  31. Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23:801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sharma N, Patel C, Shenkman M, Kessel A, Ben-Tal N, Lederkremer GZ. The Sigma-1 receptor is an ER-localized type II membrane protein. J Biol Chem. 2021;297:101299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Su TP, Hayashi T, Maurice T, Buch S, Ruoho AE. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci. 2010;31:557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang YM, Xia CY, Jia HM, He J, Lian WW, Yan Y, et al. Sigma-1 receptor: a potential target for the development of antidepressants. Neurochem Int. 2022;159:105390.

    Article  CAS  PubMed  Google Scholar 

  35. Egashira N, Harada S, Okuno R, Matsushita M, Nishimura R, Mishima K, et al. Involvement of the sigma1 receptor in inhibiting activity of fluvoxamine on marble-burying behavior: comparison with paroxetine. Eur J Pharmacol. 2007;563:149–54.

    Article  CAS  PubMed  Google Scholar 

  36. Kishimoto A, Todani A, Miura J, Kitagaki T, Hashimoto K. The opposite effects of fluvoxamine and sertraline in the treatment of psychotic major depression: a case report. Ann Gen Psychiatry. 2010;9:23.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Voronin MV, Vakhitova YV, Seredenin SB. Chaperone Sigma1R and antidepressant effect. Int J Mol Sci. 2020;21:7088.

  38. Lopez JP, Lücken MD, Brivio E, Karamihalev S, Kos A, De Donno C, et al. Ketamine exerts its sustained antidepressant effects via cell-type-specific regulation of KCNQ2. Neuron. 2022;110:2283–98.e9.

    Article  CAS  PubMed  Google Scholar 

  39. Yin YY, Wang YH, Liu WG, Yao JQ, Yuan J, Li ZH, et al. The role of the excitation: inhibition functional balance in the mPFC in the onset of antidepressants. Neuropharmacology. 2021;191:108573.

    Article  CAS  PubMed  Google Scholar 

  40. Rigg N, Abu-Hijleh FA, Patel V, Mishra RK. Ketamine-induced neurotoxicity is mediated through endoplasmic reticulum stress in vitro in STHdh(Q7/Q7) cells. Neurotoxicology. 2022;91:321–8.

    Article  CAS  PubMed  Google Scholar 

  41. Hayashi T, Su TP. Intracellular dynamics of σ-1 receptors (σ1 binding sites) in NG108-15 cells. J Pharmacol Exp Ther. 2003;306:726–33.

    Article  CAS  PubMed  Google Scholar 

  42. Hayashi T, Su TP. Sigma-1 receptors (σ1 binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export. J Pharmacol Exp Ther. 2003;306:718–25.

    Article  CAS  PubMed  Google Scholar 

  43. Hayashi T, Fujimoto M. Detergent-resistant microdomains determine the localization of sigma-1 receptors to the endoplasmic reticulum-mitochondria junction. Mol Pharmacol. 2010;77:517–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weng TY, Tsai SA, Su TP. Roles of sigma-1 receptors on mitochondrial functions relevant to neurodegenerative diseases. J Biomed Sci. 2017;24:74.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schmidt HR, Kruse AC. The molecular function of σ receptors: past, present, and future. Trends Pharmacol Sci. 2019;40:636–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ye N, Qin W, Tian S, Xu Q, Wold EA, Zhou J, et al. Small molecules selectively targeting sigma-1 receptor for the treatment of neurological diseases. J Med Chem. 2020;63:15187–217.

    Article  CAS  PubMed  Google Scholar 

  47. Su TP, Su TC, Nakamura Y, Tsai SY. The Sigma-1 receptor as a pluripotent modulator in living systems. Trends Pharmacol Sci. 2016;37:262–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Deyama S, Bang E, Kato T, Li XY, Duman RS. Neurotrophic and antidepressant actions of brain-derived neurotrophic factor require vascular endothelial growth factor. Biol Psychiatry. 2019;86:143–52.

    Article  CAS  PubMed  Google Scholar 

  49. Kato T, Fogaça MV, Deyama S, Li XY, Fukumoto K, Duman RS. BDNF release and signaling are required for the antidepressant actions of GLYX-13. Mol Psychiatry. 2018;23:2007–17.

    Article  CAS  PubMed  Google Scholar 

  50. Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med. 2012;18:1413–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garcia LS, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:140–4.

    Article  CAS  PubMed  Google Scholar 

  52. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Taliaz D, Stall N, Dar DE, Zangen A. Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis. Mol Psychiatry. 2010;15:80–92.

    Article  CAS  PubMed  Google Scholar 

  54. Kimura Y, Fujita Y, Shibata K, Mori M, Yamashita T. Sigma-1 receptor enhances neurite elongation of cerebellar granule neurons via TrkB signaling. PLoS One. 2013;8:e75760.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Avram S, Borcan F, Borcan LC, Milac AL, Mihailescu D. QSAR approaches applied to antidepressants induced neurogenesis–in vivo and in silico applications. Mini Rev Med Chem. 2015;16:230–40.

    Article  PubMed  Google Scholar 

  56. Ka M, Kook YH, Liao K, Buch S, Kim WY. Transactivation of TrkB by Sigma-1 receptor mediates cocaine-induced changes in dendritic spine density and morphology in hippocampal and cortical neurons. Cell Death Dis. 2016;7:e2414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82204360) and STI2030-Major Projects (2021ZD0200900). The experimental designs in figures were modified from BioRender.com (https://www.biorender.com/).

Author information

Authors and Affiliations

Authors

Contributions

HM, YFL, and YZ designed the study; HM, JFL, XQ, YZ, XJH, HXC, and HLC performed the research; HM, JFL, and XQ wrote the manuscript; YFL and YZ revised the manuscript. All authors approved the submitted version.

Corresponding authors

Correspondence to Yong Zhang or Yun-feng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Li, Jf., Qiao, X. et al. Sigma-1 receptor activation mediates the sustained antidepressant effect of ketamine in mice via increasing BDNF levels. Acta Pharmacol Sin 45, 704–713 (2024). https://doi.org/10.1038/s41401-023-01201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01201-8

Keywords

Search

Quick links