Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From bench to bedside: current development and emerging trend of KRAS-targeted therapy

Abstract

Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is the most frequently mutated oncogene in human cancers with mutations predominantly occurring in codon 12. These mutations disrupt the normal function of KRAS by interfering with GTP hydrolysis and nucleotide exchange activity, making it prone to the GTP-bound active state, thus leading to sustained activation of downstream pathways. Despite decades of research, there has been no progress in the KRAS drug discovery until the groundbreaking discovery of covalently targeting the KRASG12C mutation in 2013, which led to revolutionary changes in KRAS-targeted therapy. So far, two small molecule inhibitors sotorasib and adagrasib targeting KRASG12C have received accelerated approval for the treatment of non-small cell lung cancer (NSCLC) harboring KRASG12C mutations. In recent years, rapid progress hasĀ been achieved in the KRAS-targeted therapy field, especially the exploration of KRASG12C covalent inhibitors in other KRASG12C-positive malignancies, novel KRAS inhibitors beyond KRASG12C mutation or pan-KRAS inhibitors, and approaches to indirectly targeting KRAS. In this review, we provide a comprehensive overview of the molecular and mutational characteristics of KRAS and summarize the development and current status of covalent inhibitors targeting the KRASG12C mutation. We also discuss emerging promising KRAS-targeted therapeutic strategies, with a focus on mutation-specific and direct pan-KRAS inhibitors and indirect KRAS inhibitors through targeting the RAS activation-associated proteins Src homology-2 domain-containing phosphatase 2 (SHP2) and son of sevenless homolog 1 (SOS1), and shed light on current challenges and opportunities for drug discovery in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of advances in KRAS-targeted therapy inhibitors.
Fig. 2: Structure of KRAS protein and mutation frequency in human cancer.
Fig. 3: Chemical structures of representative KRAS-targeted therapeutic inhibitors.

Similar content being viewed by others

References

  1. Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170:17ā€“33.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Hunter JC, Manandhar A, Carrasco MA, Gurbani D, Gondi S, Westover KD. Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol Cancer Res. 2015;13:1325ā€“35.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503:548ā€“51.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  ADSĀ  Google ScholarĀ 

  4. Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217ā€“23.

    ArticleĀ  CASĀ  PubMedĀ  ADSĀ  Google ScholarĀ 

  5. Hallin J, Engstrom LD, Hargis L, Calinisan A, Aranda R, Briere DM, et al. The KRAS(G12C) inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 2020;10:54ā€“71.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Weiss A, Lorthiois E, Barys L, Beyer KS, Bomio-Confaglia C, Burks H, et al. Discovery, preclinical characterization, and early clinical activity of JDQ443, a structurally novel, potent, and selective covalent oral inhibitor of KRASG12C. Cancer Discov. 2022;12:1500ā€“17.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. FDA grants accelerated approval to sotorasib for KRAS G12C mutated NSCLC, https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-sotorasib-kras-g12c-mutated-nsclc.

  8. FDA grants accelerated approval to adagrasib for KRAS G12C-mutated NSCLC, https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-adagrasib-kras-g12c-mutated-nsclc.

  9. Awad MM, Liu S, Rybkin II, Arbour KC, Dilly J, Zhu VW, et al. Acquired resistance to KRAS(G12C) inhibition in cancer. N Engl J Med. 2021;384:2382ā€“93.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Tanaka N, Lin JJ, Li C, Ryan MB, Zhang J, Kiedrowski LA, et al. Clinical acquired resistance to KRAS(G12C) inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK reactivation. Cancer Discov. 2021;11:1913ā€“22.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance. J Cell Sci. 2016;129:1287ā€“92.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Tsai FD, Lopes MS, Zhou M, Court H, Ponce O, Fiordalisi JJ, et al. K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif. Proc Natl Acad Sci USA. 2015;112:779ā€“84.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  ADSĀ  Google ScholarĀ 

  13. Hancock JF, Cadwallader K, Marshall CJ. Methylation and proteolysis are essential for efficient membrane binding of prenylated p21K-ras(B). EMBO J. 1991;10:641ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Salmon M, Paniagua G, Lechuga CG, Fernandez-Garcia F, Zarzuela E, Alvarez-Diaz R, et al. KRAS4A induces metastatic lung adenocarcinomas in vivo in the absence of the KRAS4B isoform. Proc Natl Acad Sci USA. 2021;118:e2023112118.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Amendola CR, Mahaffey JP, Parker SJ, Ahearn IM, Chen WC, Zhou M, et al. KRAS4A directly regulates hexokinase 1. Nature. 2019;576:482ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Bryant KL, Mancias JD, Kimmelman AC, Der CJ. KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci. 2014;39:91ā€“100.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Pantsar T. The current understanding of KRAS protein structure and dynamics. Comput Struct Biotechnol J. 2020;18:189ā€“98.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Saraste M, Sibbald PR, Wittinghofer A. The P-loopā€”a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990;15:430ā€“4.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  19. Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science. 2001;294:1299ā€“304.

    ArticleĀ  CASĀ  PubMedĀ  ADSĀ  Google ScholarĀ 

  20. Settleman J, Albright CF, Foster LC, Weinberg RA. Association between GTPase activators for Rho and Ras families. Nature. 1992;359:153ā€“4.

    ArticleĀ  CASĀ  PubMedĀ  ADSĀ  Google ScholarĀ 

  21. Mondal S, Hsiao K, Goueli SA. A homogenous bioluminescent system for measuring GTPase, GTPase activating protein, and guanine nucleotide exchange factor activities. Assay Drug Dev Technol. 2015;13:444ā€“55.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. John J, Sohmen R, Feuerstein J, Linke R, Wittinghofer A, Goody RS. Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry. 1990;29:6058ā€“65.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Pacold ME, Suire S, Perisic O, Lara-Gonzalez S, Davis CT, Walker EH, et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell. 2000;103:931ā€“43.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol. 2015;16:281ā€“98.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401ā€“4.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  26. Lito P, Solomon M, Li LS, Hansen R, Rosen N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science. 2016;351:604ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  ADSĀ  Google ScholarĀ 

  27. Hunter JC, Gray NS, Westover KD. GTP-competitive inhibitors of RAS family members. In: Azmi AS, editor. Conquering RAS. Boston: Academic Press; 2017. p 155ā€“174.

  28. Patricelli MP, Janes MR, Li LS, Hansen R, Peters U, Kessler LV, et al. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov. 2016;6:316ā€“29.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Janes MR, Zhang J, Li LS, Hansen R, Peters U, Guo X, et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell. 2018;172:578ā€“89.e17.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Wang J, Martin-Romano P, Cassier P, Johnson M, Haura E, Lenox L, et al. Phase I study of JNJ-74699157 in patients with advanced solid tumors harboring the KRAS G12C mutation. Oncologist. 2022;27:536ā€“e53.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Fakih M, Oā€™Neil B, Price TJ, Falchook GS, Desai J, Kuo J, et al. Phase 1 study evaluating the safety, tolerability, pharmacokinetics (PK), and efficacy of AMG 510, a novel small molecule KRASG12C inhibitor, in advanced solid tumors. J Clin Oncol. 2019;37:3003.

    ArticleĀ  Google ScholarĀ 

  32. Lanman BA, Allen JR, Allen JG, Amegadzie AK, Ashton KS, Booker SK, et al. Discovery of a covalent inhibitor of KRAS(G12C) (AMG 510) for the treatment of solid tumors. J Med Chem. 2020;63:52ā€“65.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Govindan R, Fakih MG, Price TJ, Falchook GS, Desai J, Kuo JC, et al. Phase I study of AMG 510, a novel molecule targeting KRAS G12C mutant solid tumours. Ann Oncol. 2019;30:163.

    ArticleĀ  Google ScholarĀ 

  34. Hong DS, Fakih MG, Strickler JH, Desai J, Durm GA, Shapiro GI, et al. KRAS(G12C) inhibition with sotorasib in advanced solid tumors. N Engl J Med. 2020;383:1207ā€“17.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Skoulidis F, Li BT, Dy GK, Price TJ, Falchook GS, Wolf J, et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N Engl J Med. 2021;384:2371ā€“81.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Dy GK, Govindan R, Velcheti V, Falchook GS, Italiano A, Wolf J, et al. Abstract CT008: long-term outcomes with sotorasib in pretreated KRASp.G12C-mutated NSCLC: 2-year analysis of CodeBreaK100. Cancer Res. 2022;82:CT008.

    ArticleĀ  Google ScholarĀ 

  37. de Langen AJ, Johnson ML, Mazieres J, Dingemans AC, Mountzios G, Pless M, et al. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRAS(G12C) mutation: a randomised, open-label, phase 3 trial. Lancet. 2023;401:733ā€“46.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  38. Strickler JH, Satake H, George TJ, Yaeger R, Hollebecque A, Garrido-Laguna I, et al. Sotorasib in KRAS p.G12C-mutated advanced pancreatic cancer. N Engl J Med. 2023;388:33ā€“43.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Fakih MG, Kopetz S, Kuboki Y, Kim TW, Munster PN, Krauss JC, et al. Sotorasib for previously treated colorectal cancers with KRAS(G12C) mutation (CodeBreaK100): a prespecified analysis of a single-arm, phase 2 trial. Lancet Oncol. 2022;23:115ā€“24.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Kuboki Y, Yaeger R, Fakih M, Strickler JH, Masuishi T, Kim EJH, et al. 45MO Sotorasib in combination with panitumumab in refractory KRAS G12C-mutated colorectal cancer: Safety and efficacy for phase Ib full expansion cohort. Ann Oncol. 2022;33:S1445ā€“S6.

    ArticleĀ  Google ScholarĀ 

  41. Papadopoulos KP, Ou SHI, Johnson ML, Christensen J, Velastegui K, Potvin D, et al. A phase I/II multiple expansion cohort trial of MRTX849 in patients with advanced solid tumors with KRAS G12C mutation. J Clin Oncol. 2019;37:TPS3161.

    ArticleĀ  Google ScholarĀ 

  42. Fell JB, Fischer JP, Baer BR, Blake JF, Bouhana K, Briere DM, et al. Identification of the clinical development candidate MRTX849, a covalent KRAS(G12C) inhibitor for the treatment of cancer. J Med Chem. 2020;63:6679ā€“93.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Briere DM, Li S, Calinisan A, Sudhakar N, Aranda R, Hargis L, et al. The KRAS(G12C) inhibitor MRTX849 reconditions the tumor immune microenvironment and sensitizes tumors to checkpoint inhibitor therapy. Mol Cancer Ther. 2021;20:975ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Riely GJ, Ou SHI, Rybkin I, Spira A, Papadopoulos K, Sabari JK, et al. 99O_PR KRYSTAL-1: activity and preliminary pharmacodynamic (PD) analysis of adagrasib (MRTX849) in patients (Pts) with advanced nonā€“small cell lung cancer (NSCLC) harboring KRASG12C mutation. J Thorac Oncol. 2021;16:S751ā€“S2.

    ArticleĀ  Google ScholarĀ 

  45. Janne PA, Riely GJ, Gadgeel SM, Heist RS, Ou SI, Pacheco JM, et al. Adagrasib in non-small-cell lung cancer harboring a KRAS(G12C) mutation. N Engl J Med. 2022;387:120ā€“31.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Bekaii-Saab TS, Yaeger R, Spira AI, Pelster MS, Sabari JK, Hafez N, et al. Adagrasib in advanced solid tumors harboring a KRAS(G12C) mutation. J Clin Oncol. 2023;41:4097ā€“106.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Yaeger R, Weiss J, Pelster MS, Spira AI, Barve M, Ou SI, et al. Adagrasib with or without cetuximab in colorectal cancer with mutated KRAS G12C. N Engl J Med. 2023;388:44ā€“54.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Lorthiois E, Gerspacher M, Beyer KS, Vaupel A, Leblanc C, Stringer R, et al. JDQ443, a structurally novel, pyrazole-based, covalent inhibitor of KRAS(G12C) for the treatment of solid tumors. J Med Chem. 2022;65:16173ā€“203.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Tan DS, Shimizu T, Solomon B, Heist RS, Schuler M, Luken MJDM, et al. Abstract CT033: KontRASt-01: a phase Ib/II, dose-escalation study of JDQ443 in patients (pts) with advanced, KRAS G12C-mutated solid tumors. Cancer Res. 2022;82:CT033.

    ArticleĀ  Google ScholarĀ 

  50. Shi Z, Weng J, Fan X, Wang E, Zhu Q, Tao L, et al. Abstract 932: discovery of D-1553, a novel and selective KRas-G12C inhibitor with potent anti-tumor activity in a broad spectrum of tumor cell lines and xenograft models. Cancer Res. 2021;81:932.

    ArticleĀ  Google ScholarĀ 

  51. Price T, Grewal J, Abed A, Moore M, Yeh Y-M, Gadgeel S, et al. Abstract CT504: a phase 1 clinical trial to evaluate safety, tolerability, pharmacokinetics (PK) and efficacy of D-1553, a novel KRASG12C inhibitor, in patients with advanced or metastatic solid tumor harboring KRASG12C mutation. Cancer Res. 2022;82:CT504.

    ArticleĀ  Google ScholarĀ 

  52. Shi Z, Weng J, Niu H, Yang H, Liu R, Weng Y, et al. D-1553: a novel KRAS(G12C) inhibitor with potent and selective cellular and in vivo antitumor activity. Cancer Sci. 2023;114:2951ā€“60.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Li Z, Song Z, Zhao Y, Wang P, Jiang L, Gong Y, et al. D-1553 (Garsorasib), a potent and selective inhibitor of KRAS(G12C) in patients with NSCLC: phase 1 study results. J Thorac Oncol. 2023;18:940ā€“51.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Peng S-B, Si C, Zhang Y, Van Horn RD, Lin X, Gong X, et al. Abstract 1259: preclinical characterization of LY3537982, a novel, highly selective and potent KRAS-G12C inhibitor. Cancer Res. 2021;81:1259.

    ArticleĀ  Google ScholarĀ 

  55. Purkey H. Abstract ND11: discovery of GDC-6036, a clinical stage treatment for KRAS G12C-positive cancers. Cancer Res. 2022;82:ND11.

    ArticleĀ  Google ScholarĀ 

  56. Sacher A, LoRusso P, Patel MR, Miller WH Jr., Garralda E, Forster MD, et al. Single-agent divarasib (GDC-6036) in solid tumors with a KRAS G12C mutation. N Engl J Med. 2023;389:710ā€“21.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Waizenegger IC, Lu H, Thamer C, Savarese F, Gerlach D, Rudolph D, et al. Abstract 2667: trial in progress: phase 1 study of BI 1823911, an irreversible KRASG12C inhibitor targeting KRAS in its GDP-loaded state, as monotherapy and in combination with the pan-KRAS SOS1 inhibitor BI 1701963 in solid tumors expressing KRASG12C mutation. Cancer Res. 2022;82:2667.

    ArticleĀ  Google ScholarĀ 

  58. Li J, Zhao J, Cao B, Fang J, Li X, Wang M, et al. A phase I/II study of first-in-human trial of JAB-21822 (KRAS G12C inhibitor) in advanced solid tumors. J Clin Oncol. 2022;40:3089.

    ArticleĀ  Google ScholarĀ 

  59. Zhou Q, Yang N, Zhao J, Dong X, Wang H, Yuan Y, et al. Phase I dose-escalation study of IBI351 (GFH925) monotherapy in patients with advanced solid tumors. J Clin Oncol. 2022;40:3110.

    ArticleĀ  Google ScholarĀ 

  60. Zhu X, Lu Y, Guo J, Yan D, Li B, Chen X, et al. Abstract 5443: BPI-421286: a highly potent small molecule inhibitor targeting KRASG12C mutation. Cancer Res. 2022;82:5443.

    ArticleĀ  Google ScholarĀ 

  61. Gu S, Li Q, Li C, Wang Q, Fang DD, Wang S, et al. Abstract 2664: development of covalent KRASG12C inhibitor APG-1842 for the treatment of solid tumors. Cancer Res. 2022;82:2664.

    ArticleĀ  Google ScholarĀ 

  62. Kettle JG, Bagal SK, Bickerton S, Bodnarchuk MS, Boyd S, Breed J, et al. Discovery of AZD4625, a covalent allosteric inhibitor of the mutant GTPase KRAS(G12C). J Med Chem. 2022;65:6940ā€“52.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  63. Bond MJ, Crews CM. Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation. RSC Chem Biol. 2021;2:725ā€“42.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  64. Rudolph J, Settleman J, Malek S. Emerging trends in cancer drug discovery-from drugging the ā€œundruggableā€ to overcoming resistance. Cancer Discov. 2021;11:815ā€“21.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  65. Kargbo RB. PROTAC-mediated degradation of KRAS protein for anticancer therapeutics. ACS Med Chem Lett. 2020;11:5ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  66. Zeng M, Xiong Y, Safaee N, Nowak RP, Donovan KA, Yuan CJ, et al. Exploring targeted degradation strategy for oncogenic KRAS(G12C). Cell Chem Biol. 2020;27:19ā€“31.e6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  67. Bond MJ, Chu L, Nalawansha DA, Li K, Crews CM. Targeted degradation of oncogenic KRAS(G12C) by VHL-recruiting PROTACs. ACS Cent Sci. 2020;6:1367ā€“75.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  68. Roth S, Macartney TJ, Konopacka A, Chan KH, Zhou H, Queisser MA, et al. Targeting endogenous K-RAS for degradation through the affinity-directed protein missile system. Cell Chem Biol. 2020;27:1151ā€“63.e6.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  69. Teng KW, Tsai ST, Hattori T, Fedele C, Koide A, Yang C, et al. Selective and noncovalent targeting of RAS mutants for inhibition and degradation. Nat Commun. 2021;12:2656.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  ADSĀ  Google ScholarĀ 

  70. Schneider M, Radoux CJ, Hercules A, Ochoa D, Dunham I, Zalmas LP, et al. The PROTACtable genome. Nat Rev Drug Discov. 2021;20:789ā€“97.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Bekes M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21:181ā€“200.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  72. Xue JY, Zhao Y, Aronowitz J, Mai TT, Vides A, Qeriqi B, et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature. 2020;577:421ā€“5.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  ADSĀ  Google ScholarĀ 

  73. Ryan MB, Fece de la Cruz F, Phat S, Myers DT, Wong E, Shahzade HA, et al. Vertical pathway inhibition overcomes adaptive feedback resistance to KRAS(G12C) inhibition. Clin Cancer Res. 2020;26:1633ā€“43.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Yaeger R, Solit DB. Overcoming adaptive resistance to KRAS inhibitors through vertical pathway targeting. Clin Cancer Res. 2020;26:1538ā€“40.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  75. Amodio V, Yaeger R, Arcella P, Cancelliere C, Lamba S, Lorenzato A, et al. EGFR blockade reverts resistance to KRAS(G12C) inhibition in colorectal cancer. Cancer Discov. 2020;10:1129ā€“39.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  76. Koleilat MK, Kwong LN. Same name, different game: EGFR drives intrinsic KRAS(G12C) inhibitor resistance in colorectal cancer. Cancer Discov. 2020;10:1094ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  77. Adachi Y, Ito K, Hayashi Y, Kimura R, Tan TZ, Yamaguchi R, et al. Epithelial-to-mesenchymal transition is a cause of both intrinsic and acquired resistance to KRAS G12C inhibitor in KRAS G12C-mutant non-small cell lung cancer. Clin Cancer Res. 2020;26:5962ā€“73.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  78. Solanki HS, Welsh EA, Fang B, Izumi V, Darville L, Stone B, et al. Cell type-specific adaptive signaling responses to KRAS(G12C) inhibition. Clin Cancer Res. 2021;27:2533ā€“48.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  79. Li BT, Velcheti V, Price TJ, Hong DS, Fakih M, Kim D-W, et al. Largest evaluation of acquired resistance to sotorasib in KRAS p.G12C-mutated nonā€“small cell lung cancer (NSCLC) and colorectal cancer (CRC): Plasma biomarker analysis of CodeBreaK100. J Clin Oncol. 2022;40:102.

    ArticleĀ  Google ScholarĀ 

  80. Koga T, Suda K, Fujino T, Ohara S, Hamada A, Nishino M, et al. KRAS secondary mutations that confer acquired resistance to KRAS G12C inhibitors, sotorasib and adagrasib, and overcoming strategies: insights from in vitro experiments. J Thorac Oncol. 2021;16:1321ā€“32.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  81. Wang X, Allen S, Blake JF, Bowcut V, Briere DM, Calinisan A, et al. Identification of MRTX1133, a noncovalent, potent, and selective KRAS(G12D) inhibitor. J Med Chem. 2022;65:3123ā€“33.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  82. Hallin J, Bowcut V, Calinisan A, Briere DM, Hargis L, Engstrom LD, et al. Anti-tumor efficacy of a potent and selective non-covalent KRAS(G12D) inhibitor. Nat Med. 2022;28:2171ā€“82.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  83. Kemp SB, Cheng N, Markosyan N, Sor R, Kim IK, Hallin J, et al. Efficacy of a small-molecule inhibitor of KrasG12D in immunocompetent models of pancreatic cancer. Cancer Discov. 2023;13:298ā€“311.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  84. Mao Z, Xiao H, Shen P, Yang Y, Xue J, Yang Y, et al. KRAS(G12D) can be targeted by potent inhibitors via formation of salt bridge. Cell Discov. 2022;8:5.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  85. Nagashima T, Inamura K, Nishizono Y, Suzuki A, Tanaka H, Yoshinari T, et al. ASP3082, a first-in-class novel KRAS G12D degrader, exhibits remarkable anti-tumor activity in KRAS G12D mutated cancer models. Eur J Cancer. 2022;174:S30.

    ArticleĀ  Google ScholarĀ 

  86. Tolcher AW, Park W, Wang JS, Spira AI, Janne PA, Lee H-J, et al. Trial in progress: a phase 1, first-in-human, open-label, multicenter, dose-escalation and dose-expansion study of ASP3082 in patients with previously treated advanced solid tumors and KRAS G12D mutations. J Clin Oncol. 2023;41:TPS764.

    ArticleĀ  Google ScholarĀ 

  87. Zhang Z, Guiley KZ, Shokat KM. Chemical acylation of an acquired serine suppresses oncogenic signaling of K-Ras(G12S). Nat Chem Biol. 2022;18:1177ā€“83.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  88. Zhang Z, Morstein J, Ecker AK, Guiley KZ, Shokat KM. Chemoselective covalent modification of K-Ras(G12R) with a small molecule electrophile. J Am Chem Soc. 2022;144:15916ā€“21.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  89. Vasta JD, Peacock DM, Zheng Q, Walker JA, Zhang Z, Zimprich CA, et al. KRAS is vulnerable to reversible switch-II pocket engagement in cells. Nat Chem Biol. 2022;18:596ā€“604.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  90. Maurer T, Garrenton LS, Oh A, Pitts K, Anderson DJ, Skelton NJ, et al. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci USA. 2012;109:5299ā€“304.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  ADSĀ  Google ScholarĀ 

  91. Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG, et al. Discovery of small molecules that bind to K-Ras and inhibit sos-mediated activation. Angew Chem Int Ed. 2012;51:6140ā€“3.

    ArticleĀ  CASĀ  Google ScholarĀ 

  92. Kessler D, Gmachl M, Mantoulidis A, Martin LJ, Zoephel A, Mayer M, et al. Drugging an undruggable pocket on KRAS. Proc Natl Acad Sci USA. 2019;116:15823ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  ADSĀ  Google ScholarĀ 

  93. Kessler D, Bergner A, Bottcher J, Fischer G, Dobel S, Hinkel M, et al. Drugging all RAS isoforms with one pocket. Future Med Chem. 2020;12:1911ā€“23.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  94. Sun Q, Phan J, Friberg AR, Camper DV, Olejniczak ET, Fesik SW. A method for the second-site screening of K-Ras in the presence of a covalently attached first-site ligand. J Biomol NMR. 2014;60:11ā€“4.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  95. Broker J, Waterson AG, Smethurst C, Kessler D, Bottcher J, Mayer M, et al. Fragment optimization of reversible binding to the switch II pocket on KRAS leads to a potent, in vivo active KRAS(G12C) inhibitor. J Med Chem. 2022;65:14614ā€“29.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  96. Kim D, Herdeis L, Rudolph D, Zhao Y, Bottcher J, Vides A, et al. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth. Nature. 2023;619:160ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  ADSĀ  Google ScholarĀ 

  97. Stanton BZ, Chory EJ, Crabtree GR. Chemically induced proximity in biology and medicine. Science. 2018;359:eaao5902.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  98. Schreiber SL. The rise of molecular glues. Cell. 2021;184:3ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  99. Stewart ML, Perl NR, Lee S-J, Xue L, Zhou M, Simon J, et al. Abstract B37: development of inhibitors of the activated form of KRAS G12C. Mol Cancer Res. 2020;18:B37.

    ArticleĀ  Google ScholarĀ 

  100. Zhou M, Yuzhakov A, Benod CC, Xue L, Silver AD, Iyer G, et al. Abstract A06: biophysical and biochemical characterization of KRAS G12C inhibition through the SMARTTM platform. Mol Cancer Res. 2020;18:A06.

    ArticleĀ  Google ScholarĀ 

  101. Schulze CJ, Bermingham A, Choy TJ, Cregg JJ, Kiss G, Marquez A, et al. Abstract PR10: tri-complex inhibitors of the oncogenic, GTP-bound form of KRASG12C overcome RTK-mediated escape mechanisms and drive tumor regressions in vivo. Mol Cancer Ther. 2019;18:PR10.

    ArticleĀ  Google ScholarĀ 

  102. Nichols RJ, Yang YC, Cregg J, Schulze CJ, Wang Z, Dua R, et al. Abstract 3595: RMC-6291, a next-generation tri-complex KRASG12C(ON) inhibitor, outperforms KRASG12C(OFF) inhibitors in preclinical models of KRASG12C cancers. Cancer Res. 2022;82:3595.

    ArticleĀ  Google ScholarĀ 

  103. Koltun E, Cregg J, Rice MA, Whalen DM, Freilich R, Jiang J, et al. Abstract 1260: first-in-class, orally bioavailable KRASG12V(ON) tri-complex inhibitors, as single agents and in combinations, drive profound anti-tumor activity in preclinical models of KRASG12V mutant cancers. Cancer Res. 2021;81:1260.

    ArticleĀ  Google ScholarĀ 

  104. Koltun ES, Rice MA, Gustafson WC, Wilds D, Jiang J, Lee BJ, et al. Abstract 3597: direct targeting of KRASG12X mutant cancers with RMC-6236, a first-in-class, RAS-selective, orally bioavailable, tri-complex RASMULTI(ON) inhibitor. Cancer Res. 2022;82:3597.

    ArticleĀ  Google ScholarĀ 

  105. Knox JE, Jiang J, Burnett GL, Liu Y, Weller CE, Wang Z, et al. Abstract 3596: RM-036, a first-in-class, orally-bioavailable, Tri-Complex covalent KRASG12D(ON) inhibitor, drives profound anti-tumor activity in KRASG12D mutant tumor models. Cancer Res. 2022;82:3596.

    ArticleĀ  Google ScholarĀ 

  106. Schulze CJ, Cregg J, Seamon KJ, Yang YC, Wang Z, Garrenton LS, et al. Abstract 3598: a first-in-class tri-complex KRASG13C(ON) inhibitor validates therapeutic targeting of KRASG13Cand drives tumor regressions in preclinical models. Cancer Res. 2022;82:3598.

    ArticleĀ  Google ScholarĀ 

  107. Zhang Z, Shokat KM. Bifunctional small-molecule ligands of K-Ras induce its association with immunophilin proteins. Angew Chem Int Ed Engl. 2019;58:16314ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  108. Moore AR, Rosenberg SC, McCormick F, Malek S. RAS-targeted therapies: is the undruggable drugged? Nat Rev Drug Discov. 2020;19:533ā€“52.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  109. Frankson R, Yu ZH, Bai Y, Li Q, Zhang RY, Zhang ZY. Therapeutic targeting of oncogenic tyrosine phosphatases. Cancer Res. 2017;77:5701ā€“5.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  110. Liu Q, Qu J, Zhao M, Xu Q, Sun Y. Targeting SHP2 as a promising strategy for cancer immunotherapy. Pharmacol Res. 2020;152:104595.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  111. Yuan X, Bu H, Zhou J, Yang CY, Zhang H. Recent advances of SHP2 inhibitors in cancer therapy: current development and clinical application. J Med Chem. 2020;63:11368ā€“96.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  112. Neel BG, Gu H, Pao L. The ā€˜Shpā€™ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci. 2003;28:284ā€“93.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  113. Barford D, Neel BG. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure. 1998;6:249ā€“54.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  114. Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE. Crystal structure of the tyrosine phosphatase SHP-2. Cell. 1998;92:441ā€“50.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  115. Chen YN, LaMarche MJ, Chan HM, Fekkes P, Garcia-Fortanet J, Acker MG, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature. 2016;535:148ā€“52.

    ArticleĀ  CASĀ  PubMedĀ  ADSĀ  Google ScholarĀ 

  116. Garcia Fortanet J, Chen CH, Chen YN, Chen Z, Deng Z, Firestone B, et al. Allosteric inhibition of SHP2: identification of a potent, selective, and orally efficacious phosphatase inhibitor. J Med Chem. 2016;59:7773ā€“82.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  117. Wong GS, Zhou J, Liu JB, Wu Z, Xu X, Li T, et al. Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat Med. 2018;24:968ā€“77.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  118. Ruess DA, Heynen GJ, Ciecielski KJ, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24:954ā€“60.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  119. Mainardi S, Mulero-Sanchez A, Prahallad A, Germano G, Bosma A, Krimpenfort P, et al. SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo. Nat Med. 2018;24:961ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  120. LaMarche MJ, Acker M, Argintaru A, Bauer D, Boisclair J, Chan H, et al. Identification of TNO155, an allosteric SHP2 inhibitor for the treatment of cancer. J Med Chem. 2020;63:13578ā€“94.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  121. Liu C, Lu H, Wang H, Loo A, Zhang X, Yang G, et al. Combinations with allosteric SHP2 inhibitor TNO155 to block receptor tyrosine kinase signaling. Clin Cancer Res. 2021;27:342ā€“54.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  122. Brana I, Shapiro G, Johnson ML, Yu HA, Robbrecht D, Tan DSW, et al. Initial results from a dose finding study of TNO155, a SHP2 inhibitor, in adults with advanced solid tumors. J Clin Oncol. 2021;39:3005.

    ArticleĀ  Google ScholarĀ 

  123. Sabari JK, Park H, Tolcher AW, Ou S-HI, Garon EB, George B, et al. KRYSTAL-2: a phase I/II trial of adagrasib (MRTX849) in combination with TNO155 in patients with advanced solid tumors with KRAS G12C mutation. J Clin Oncol. 2021;39:TPS146.

    ArticleĀ  Google ScholarĀ 

  124. Brachmann SM, Weiss A, Guthy DA, Beyer K, Voshol J, Maira M, et al. Abstract P124: JDQ443, a covalent irreversible inhibitor of KRAS G12C, exhibits a novel binding mode and demonstrates potent anti-tumor activity and favorable pharmacokinetic properties in preclinical models. Mol Cancer Ther. 2021;20:P124.

    ArticleĀ  Google ScholarĀ 

  125. Koltun ES, Aay N, Buckl A, Jogalekar AS, Kiss G, Marquez A, et al. Abstract 4878: RMC-4550, an allosteric inhibitor of SHP2: Synthesis, structure, and anti-tumor activity. Cancer Res. 2018;78:4878.

    ArticleĀ  Google ScholarĀ 

  126. Nichols RJ, Haderk F, Stahlhut C, Schulze CJ, Hemmati G, Wildes D, et al. RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nat Cell Biol. 2018;20:1064ā€“73.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  127. Ou SI, Koczywas M, Ulahannan S, Janne P, Pacheco J, Burris H, et al. A12 The SHP2 inhibitor RMC-4630 in patients with KRAS-mutant non-small cell lung cancer: preliminary evaluation of a first-in-man phase 1 clinical trial. J Thorac Oncol. 2020;15:S15ā€“S6.

    ArticleĀ  Google ScholarĀ 

  128. Koczywas M, Haura E, Janne PA, Pacheco JM, Ulahannan S, Wang JS, et al. Abstract LB001: anti-tumor activity and tolerability of the SHP2 inhibitor RMC-4630 as a single agent in patients with RAS-addicted solid cancers. Cancer Res. 2021;81:LB001.

    ArticleĀ  Google ScholarĀ 

  129. Bendell J, Ulahannan S, Koczywas M, Brahmer J, Capasso A, Eckhardt SG, et al. Intermittent dosing of RMC-4630, a potent, selective inhibitor of SHP2, combined with the MEK inhibitor cobimetinib, in a phase 1b/2 clinical trial for advanced solid tumors with activating mutations of RAS signaling. Eur J Cancer. 2020;138:S8ā€“9.

    ArticleĀ  Google ScholarĀ 

  130. Falchook G, Li BT, Marrone KA, Bestvina CM, Langer CJ, Krauss JC, et al. OA03.03 Sotorasib in combination with RMC-4630, a SHP2 inhibitor, in KRAS p.G12C-mutated NSCLC and other solid tumors. J Thorac Oncol. 2022;17:S8.

    ArticleĀ  Google ScholarĀ 

  131. Wang P, Zheng Q, Kang D, Sun X, Zhu S, Wang Y, et al. 30P Investigation of KRAS G12C inhibitor JAB-21822 as a single agent and in combination with SHP2 inhibitor JAB-3312 in preclinical cancer models. Ann Oncol. 2022;33:S1441.

    ArticleĀ  Google ScholarĀ 

  132. Sun Y, Meyers BA, Johnson SB, Harris AL, Czako B, Cross JB, et al. Abstract C036: siscovery of IACS-13909, an allosteric SHP2 inhibitor that overcomes multiple mechanisms underlying osimertinib resistance. Mol Cancer Ther. 2019;18:C036.

    ArticleĀ  Google ScholarĀ 

  133. Sun Y, Meyers BA, Czako B, Leonard P, Mseeh F, Harris AL, et al. Allosteric SHP2 inhibitor, IACS-13909, overcomes EGFR-dependent and EGFR-independent resistance mechanisms toward osimertinib. Cancer Res. 2020;80:4840ā€“53.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  134. Czako B, Sun Y, McAfoos T, Cross JB, Leonard PG, Burke JP. et al. Discovery of 6-[(3S,4S)-4-amino-3-methyl-2-oxa-8-azaspiro[4.5]decan-8-yl]-3-(2,3-dichlorophenyl)-2-methyl-3,4-dihydropyrimidin-4-one (IACS-15414), a potent and orally bioavailable SHP2 inhibitor. J Med Chem. 2021;64:15141ā€“69.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  135. Stice JP, Donovan S, Sun Y, Kohl N, Czako B, Mseeh F, et al. Abstract P207: BBP-398, a potent, small molecule inhibitor of SHP2, enhances the response of established NSCLC xenografts to KRASG12C and mutEGFR inhibitors. Mol Cancer Ther. 2021;20:P207.

    ArticleĀ  Google ScholarĀ 

  136. Williams B, Taylor A, Orozco O, Owen C, Kelley E, Lescarbeau A, et al. Abstract 3327: discovery and characterization of the potent, allosteric SHP2 inhibitor GDC-1971 for the treatment of RTK/RAS driven tumors. Cancer Res. 2022;82:3327.

    ArticleĀ  Google ScholarĀ 

  137. Drilon A, Sharma MR, Johnson ML, Yap TA, Gadgeel S, Nepert D, et al. SHP2 inhibition sensitizes diverse oncogene-addicted solid tumors to re-treatment with targeted therapy. Cancer Discov. 2023;13:1789ā€“801.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  138. Drilon AE, Johnson ML, Gadgeel SM, Nepert D, Feng G, Golmakani M, et al. A first-in-human, phase 1 study of the SHP2 inhibitor PF-07284892 as monotherapy and in combination with different targeted therapies in oncogene-driven, treatment-resistant solid tumors. J Clin Oncol. 2023;41:3020.

    ArticleĀ  Google ScholarĀ 

  139. Martin L, Patel R, Zhang J, Nevarez R, Congdon T, Brail L, et al. Abstract 2670: ERAS-601, a potent allosteric inhibitor of SHP2, synergistically enhances the efficacy of sotorasib/adagrasib and cetuximab in NSCLC, CRC, and HNSCC tumor models. Cancer Res. 2022;82:2670.

    ArticleĀ  Google ScholarĀ 

  140. Shojaei F, Shojaei F, Ricono JM, Fang C, Kabbinavar F, Goodenow B, et al. Abstract 1041: HBI-2376, HUYABIO clinical stage SHP2 inhibitor, possess robust in vitro potency and in vivo efficacy in several preclinical tumor models carrying KrasG12C or EGFR mutations. Cancer Res. 2022;82:1041.

    ArticleĀ  Google ScholarĀ 

  141. Xia X, Du L, Zhuge H, Zheng Q, Cui W, Zhu J, et al. Abstract 1475: discovery of ETS-001, a highly potent allosteric SHP2 inhibitor to treat RTK/RAS-driven cancers. Cancer Res. 2021;81:1475.

    ArticleĀ  Google ScholarĀ 

  142. Li L, Fu B, Han H, Sun Z, Zhao X, Jv X, et al. Abstract 5463: BPI-442096: a potent and selective inhibitor of SHP2 for the treatment of multiple cancers. Cancer Res. 2022;82:5463.

    ArticleĀ  Google ScholarĀ 

  143. Vigil D, Cherfils J, Rossman KL, Der CJ. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer. 2010;10:842ā€“57.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  144. Patgiri A, Yadav KK, Arora PS, Bar-Sagi D. An orthosteric inhibitor of the Ras-Sos interaction. Nat Chem Biol. 2011;7:585ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  145. Leshchiner ES, Parkhitko A, Bird GH, Luccarelli J, Bellairs JA, Escudero S, et al. Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proc Natl Acad Sci USA. 2015;112:1761ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  ADSĀ  Google ScholarĀ 

  146. Winter JJ, Anderson M, Blades K, Brassington C, Breeze AL, Chresta C, et al. Small molecule binding sites on the Ras:SOS complex can be exploited for inhibition of Ras activation. J Med Chem. 2015;58:2265ā€“74.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  147. Hillig RC, Sautier B, Schroeder J, Moosmayer D, Hilpmann A, Stegmann CM, et al. Discovery of potent SOS1 inhibitors that block RAS activation via disruption of the RAS-SOS1 interaction. Proc Natl Acad Sci USA. 2019;116:2551ā€“60.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  ADSĀ  Google ScholarĀ 

  148. Burns MC, Sun Q, Daniels RN, Camper D, Kennedy JP, Phan J, et al. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange. Proc Natl Acad Sci USA. 2014;111:3401ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  ADSĀ  Google ScholarĀ 

  149. Hodges TR, Abbott JR, Little AJ, Sarkar D, Salovich JM, Howes JE, et al. Discovery and structure-based optimization of benzimidazole-derived activators of SOS1-mediated nucleotide exchange on RAS. J Med Chem. 2018;61:8875ā€“94.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  150. Abbott JR, Patel PA, Howes JE, Akan DT, Kennedy JP, Burns MC, et al. Discovery of quinazolines that activate SOS1-mediated nucleotide exchange on RAS. ACS Med Chem Lett. 2018;9:941ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  151. Sarkar D, Olejniczak ET, Phan J, Coker JA, Sai J, Arnold A, et al. Discovery of sulfonamide-derived agonists of SOS1-mediated nucleotide exchange on RAS using fragment-based methods. J Med Chem. 2020;63:8325ā€“37.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  152. Hofmann MH, Gmachl M, Ramharter J, Savarese F, Gerlach D, Marszalek JR, et al. BI-3406, a potent and selective SOS1ā€“KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov. 2021;11:142ā€“57.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  153. Ramharter J, Kessler D, Ettmayer P, Hofmann MH, Gerstberger T, Gmachl M, et al. One atom makes all the difference: getting a foot in the door between SOS1 and KRAS. J Med Chem. 2021;64:6569ā€“80.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  154. Thatikonda V, Lu H, Jurado S, Kostyrko K, Bristow CA, Bosch K, et al. Combined KRAS (G12C) and SOS1 inhibition enhances and extends the anti-tumor response in KRAS (G12C) -driven cancers by addressing intrinsic and acquired resistance. bioRxiv. 2023. 2023.01.23.525210.

  155. Hofmann MH, Lu H, Duenzinger U, Gerlach D, Trapani F, Machado AA, et al. Abstract CT210: trial in process: Phase 1 studies of BI 1701963, a SOS1::KRAS Inhibitor, in combination with MEK inhibitors, irreversible KRASG12C inhibitors or irinotecan. Cancer Res. 2021;81:CT210.

    ArticleĀ  Google ScholarĀ 

  156. Ketcham JM, Haling J, Khare S, Bowcut V, Briere DM, Burns AC, et al. Design and discovery of MRTX0902, a potent, selective, brain-Penetrant, and orally bioavailable inhibitor of the SOS1:KRAS protein-protein interaction. J Med Chem. 2022;65:9678ā€“90.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  157. Ketcham JM, Khare S, Sudhakar N, Briere DM, Yan L, Laguer J, et al. Abstract ND02: MRTX0902: a SOS1 inhibitor for therapeutic intervention of KRAS-driven cancers. Cancer Res. 2022;82:ND02.

    ArticleĀ  Google ScholarĀ 

  158. Buckl A, Quintana E, Lee GJ, Shifrin N, Zhong M, Garrenton LS, et al. Abstract 1273: discovery of a potent, selective, and orally bioavailable SOS1 inhibitor, RMC-023, an in vivo tool compound that blocks RAS activation via disruption of the RAS-SOS1 interaction. Cancer Res. 2021;81:1273.

    ArticleĀ  Google ScholarĀ 

  159. Thompson SK, Buckl A, Dossetter AG, Griffen E, Gill A. Small molecule Son of Sevenless 1 (SOS1) inhibitors: a review of the patent literature. Expert Opin Ther Pat. 2021;31:1189ā€“204.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  160. Zhang S, Zhang Y, Chen X, Xu J, Fang H, Li Y, et al. Design and structural optimization of orally bioavailable SOS1 inhibitors for the treatment of KRAS-driven carcinoma. J Med Chem. 2022;65:15856ā€“77.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  161. He H, Zhang Y, Xu J, Li Y, Fang H, Liu Y, et al. Discovery of orally bioavailable SOS1 inhibitors for suppressing KRAS-driven carcinoma. J Med Chem. 2022;65:13158ā€“71.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  162. Zhou C, Fan Z, Zhou Z, Li Y, Cui R, Liu C, et al. Discovery of the first-in-class agonist-based SOS1 PROTACs effective in human cancer cells harboring various KRAS mutations. J Med Chem. 2022;65:3923ā€“42.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  163. Bian Y, Alem D, Beato F, Hogenson TL, Yang X, Jiang K, et al. Development of SOS1 inhibitor-based degraders to target KRAS-mutant colorectal cancer. J Med Chem. 2022;65:16432ā€“50.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  164. Zhou Z, Zhou G, Zhou C, Fan Z, Cui R, Li Y, et al. Discovery of a potent, cooperative, and selective SOS1 PROTAC ZZ151 with In vivo antitumor efficacy in KRAS-mutant cancers. J Med Chem. 2023;66:4197ā€“214.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  165. Hamilton G, Stickler S, Rath B. Targeting of SOS1: from SOS1 activators to proteolysis targeting chimeras. Curr Pharm Des. 2023;29:1741ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  166. Paez D, Meriggi F, Cremolini C, Folprecht G, Korantzis I, Chan E, et al. 437TiP Trial in progress: a phase III global study of sotorasib, a specific KRAS G12C inhibitor, in combination with panitumumab versus investigatorā€™s choice in chemorefractory metastatic colorectal cancer (CodeBreaK 300). Ann Oncol. 2022;33:S734.

    ArticleĀ  Google ScholarĀ 

  167. Weiss J, Yaeger RD, Johnson ML, Spira A, Klempner SJ, Barve MA, et al. LBA6 KRYSTAL-1: Adagrasib (MRTX849) as monotherapy or combined with cetuximab (Cetux) in patients (Pts) with colorectal cancer (CRC) harboring a KRASG12C mutation. Ann Oncol. 2021;32:S1294.

    ArticleĀ  Google ScholarĀ 

  168. Nassar AH, Adib E, Kwiatkowski DJ. Distribution of KRAS (G12C) somatic mutations across race, sex, and cancer type. N Engl J Med. 2021;384:185ā€“7.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  169. Hofmann MH, Gerlach D, Misale S, Petronczki M, Kraut N. Expanding the reach of precision oncology by drugging all KRAS mutants. Cancer Discov. 2022;12:924ā€“37.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  170. Quintana E, Schulze CJ, Myers DR, Choy TJ, Mordec K, Wildes D, et al. Allosteric inhibition of SHP2 stimulates antitumor immunity by transforming the immunosuppressive environment. Cancer Res. 2020;80:2889ā€“902.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  171. Fedele C, Li S, Teng KW, Foster CJR, Peng D, Ran H, et al. SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling. J Exp Med. 2021;218:e20201414.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  172. Moghadamchargari Z, Shirzadeh M, Liu C, Schrecke S, Packianathan C, Russell DH, et al. Molecular assemblies of the catalytic domain of SOS with KRas and oncogenic mutants. Proc Natl Acad Sci USA. 2021;118:e2022403118.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (82273948), High-level Innovative Research Institute (2021B0909050003), State Key Laboratory of Drug Research (SKLDR-2023-TT-01 and SIMM2205KF-09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Xie or Jian Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, Qp., Xie, H. et al. From bench to bedside: current development and emerging trend of KRAS-targeted therapy. Acta Pharmacol Sin 45, 686ā€“703 (2024). https://doi.org/10.1038/s41401-023-01194-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01194-4

Keywords

Search

Quick links