Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting PRSS23 with tipranavir induces gastric cancer stem cell apoptosis and inhibits growth of gastric cancer via the MKK3/p38 MAPK-IL24 pathway

Abstract

Gastric cancer stem cells (GCSCs) contribute to the refractory features of gastric cancer (GC) and are responsible for metastasis, relapse, and drug resistance. The key factors drive GCSC function and affect the clinical outcome of GC patients remain poorly understood. PRSS23 is a novel serine protease that is significantly up-regulated in several types of cancers and cancer stem cells, and related to tumor progression and drug resistance. In this study, we investigated the role of PRSS23 in GCSCs as well as the mechanism by which PRSS23 regulated the GCSC functions. We demonstrated that PRSS23 was critical for sustaining GCSC survival. By screening a collection of human immunodeficiency virus (HIV) protease inhibitors (PIs), we identified tipranavir as a PRSS23-targeting drug, which effectively killed both GCSC and GC cell lines (its IC50 values were 4.7 and 6.4 μM in GCSC1 cells and GCSC2 cells, respectively). Administration of tipranavir (25 mg·kg−1·d−1, i.p., for 8 days) in GCSC-derived xenograft mice markedly inhibited the growth of subcutaneous GCSC tumors without apparent toxicity. In contrast, combined treatment with 5-FU plus cisplatin did not affect the tumor growth but causing significant weight loss. Furthermore, we revealed that tipranavir induced GCSC cell apoptosis by suppressing PRSS23 expression, releasing MKK3 from the PRSS23/MKK3 complex to activate p38 MAPK, and thereby activating the IL24-mediated Bax/Bak mitochondrial apoptotic pathway. In addition, tipranavir was found to kill other types of cancer cell lines and drug-resistant cell lines. Collectively, this study demonstrates that by targeting both GCSCs and GC cells, tipranavir is a promising anti-cancer drug, and the clinical development of tipranavir or other drugs specifically targeting the PRSS23/MKK3/p38MAPK-IL24 mitochondrial apoptotic pathway may offer an effective approach to combat gastric and other cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overexpression of PRSS23 is essential for the survival of GCSCs.
Fig. 2: Tipranavir reduces the viability of both GCSCs and GC cell lines.
Fig. 3: Tipranavir-induced GCSC and GC death are dependent on PRSS23.
Fig. 4: Tipranavir induces apoptosis of GCSCs via the mitochondrial pathway.
Fig. 5: Tipranavir promotes GCSC apoptosis by inducing IL24 expression.
Fig. 6: The PRSS23/MKK3/p38 MAPK pathway activates the IL24-dependent mitochondrial apoptotic pathway in GCSCs.
Fig. 7: Tipranavir inhibits GCSC-derived tumor growth without apparent toxicity.
Fig. 8: The proposed mechanism by which tipranavir induces GCSC apoptosis.

Similar content being viewed by others

Data availability

Sequencing data from the RNA-seq experiments are available on the GEO server (GSE210249 and GSE161825). The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. IARC, WHO. Cancer fact sheets, stomach. 2018; https://gco.iarc.fr/today/data/factsheets/cancers/7-Stomach-fact-sheet.pdf (accessed Oct 15, 2020).

  3. Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl). 2021;134:783–91.

    Article  PubMed  Google Scholar 

  4. Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet 2016;388:2654–64.

    Article  PubMed  Google Scholar 

  5. Ajani JA, Lee J, Sano T, Janjigian YY, Fan D, Song S. Gastric adenocarcinoma. Nat Rev Dis Prim. 2017;3:17036.

    Article  PubMed  Google Scholar 

  6. Smyth EC, Verheij M, Allum W, Cunningham D, Cervantes A, Arnold D. Gastric cancer: ESMO Clinical Practice Guidelines fordiagnosis, treatment and follow-up. Ann Oncol. 2016;27:v38–49.

    Article  PubMed  CAS  Google Scholar 

  7. Muro K, Van Cutsem E, Narita Y, Pentheroudakis G, Baba E, Li J, et al. Pan-Asian adapted ESMO clinical practice guidelines for the management of patients with metastatic gastric cancer: a JSMO-ESMO initiative endorsed by CSCO, KSMO, MOS, SSO and TOS. Ann Oncol. 2019;30:19–33.

    Article  PubMed  CAS  Google Scholar 

  8. Ajani JA, D’Amico TA, Almhanna K, Bentrem DJ, Chao J, Das P, et al. Gastric Cancer, Version 3.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2016;14:1286–312.

    Article  PubMed  Google Scholar 

  9. Warschkow R, Baechtold M, Leung K, Schmied BM, Nussbaum DP, Gloor B, et al. Selective survival advantage associated with primary tumor resection for metastatic gastric cancer in a Western population. Gastric Cancer. 2018;21:324–37.

    Article  PubMed  Google Scholar 

  10. Wagner AD, Syn NL, Moehler M, Grothe W, Yong WP, Tai BC, et al. Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev. 2017;8:CD004064.

    PubMed  Google Scholar 

  11. Lordick F, Shitara K, Janjigian YY. New agents on the horizon in gastric cancer. Ann Oncol. 2017;28:1767–75.

    Article  PubMed  CAS  Google Scholar 

  12. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–34.

    Article  PubMed  CAS  Google Scholar 

  13. Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer. 2013;13:727–38.

    Article  PubMed  CAS  Google Scholar 

  14. Pützer BM, Solanki M, Herchenröder O. Advances in cancer stem cell targeting: How to strike the evil at its root. Adv Drug Deliv Rev. 2017;120:89–107.

    Article  PubMed  Google Scholar 

  15. Kaiser J. The cancer stem cell gamble. Science 2015;347:226–9.

    Article  PubMed  CAS  Google Scholar 

  16. Saygin C, Matei D, Majeti R, Reizes O, Lathia JD. Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell. 2019;24:25–40.

    Article  PubMed  CAS  Google Scholar 

  17. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, et al. Identification of gastric cancer stem cells usingthe cell surface marker CD44. Stem Cells. 2009;27:1006–20.

    Article  PubMed  CAS  Google Scholar 

  18. Chen T, Yang K, Yu J, Meng W, Yuan D, Bi F, et al. Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Res. 2012;22:248–58.

    Article  PubMed  CAS  Google Scholar 

  19. Brungs D, Aghmesheh M, Vine KL, Becker TM, Carolan MG, Ranson M. Gastric cancer stem cells: evidence, potential markers, and clinical implications. J Gastroenterol. 2016;51:313–26.

    Article  PubMed  CAS  Google Scholar 

  20. Fu L, Bu L, Yasuda T, Koiwa M, Akiyama T, Uchihara T, et al. Gastric cancer stem cells: current insights into the immune microenvironment and therapeutic targets. Biomedicines. 2020;8:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lytle NK, Barber AG, Reya T. Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer. 2018;18:669–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zajchowski DA, Bartholdi MF, Gong Y, Webster L, Liu HL, Munishkin A, et al. Identification of gene expressionprofiles that predict the aggressive behavior of breast cancer cells. Cancer Res. 2001;61:5168–78.

    PubMed  CAS  Google Scholar 

  23. Ifon ET, Pang AL, Johnson W, Cashman K, Zimmerman S, Muralidhar S, et al. U94 alters FN1 and ANGPTL4 gene expressionand inhibits tumorigenesis of prostate cancer cell line PC3. Cancer Cell Int. 2005;5:19.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jarzab B, Wiench M, Fujarewicz K, Simek K, Jarzab M, Oczko-Wojciechowska M, et al. Gene expression profile of papillary thyroidcancer: sources of variability and diagnostic implications. Cancer Res. 2005;65:1587–97.

    Article  PubMed  CAS  Google Scholar 

  25. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core signaling pathwaysin human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Seno A, Kasai T, Ikeda M, Vaidyanath A, Masuda J, Mizutani A, et al. Characterization of gene expression patterns among artificiallydeveloped cancer stem cells using spherical self-organizing map. Cancer Inf. 2016;15:163–78.

    CAS  Google Scholar 

  27. Chan HS, Chang SJ, Wang TY, Ko HJ, Lin YC, Lin KT, et al. Serine protease PRSS23 is upregulated by estrogen receptor alpha andassociated with proliferation of breast cancer cells. PLoS One. 2012;7:e30397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zeng Q, Lin X, Chen H, Yan Y, Wang X. Multi-time scale transcriptomic analysis on the dynamic process of tamoxifen resistance development in breast cancer cell lines. Breast Cancer. 2022;29:458–67.

    Article  PubMed  Google Scholar 

  29. Han B, Yang Y, Chen J, He X, Lv N, Yan R. PRSS23 knockdown inhibits gastric tumorigenesis through EIF2 signaling. Pharmacol Res. 2019;142:50–7.

    Article  PubMed  CAS  Google Scholar 

  30. Eatemadi A, Aiyelabegan HT, Negahdari B, Mazlomi MA, Daraee H, Daraee N, et al. Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed Pharmacother. 2017;86:221–31.

    Article  PubMed  CAS  Google Scholar 

  31. Bernegger S, Jarzab M, Wessler S, Posselt G. Proteolytic landscapes in gastric pathology and cancerogenesis. Int J Mol Sci. 2022;23:2419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kubben FJ, Sier CF, van Duijn W, Griffioen G, Hanemaaijer R, van de Velde CJ, et al. Matrix metalloproteinase-2 is a consistent prognostic factor in gastric cancer. Br J Cancer. 2006;94:1035–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wu CY, Wu MS, Chiang EP, Chen YJ, Chen CJ, Chi NH, et al. Plasma matrix metalloproteinase-9 level is better than serum matrix metalloproteinase-9 level to predict gastric cancer evolution. Clin Cancer Res. 2007;13:2054–60.

    Article  PubMed  CAS  Google Scholar 

  34. Habič A, Novak M, Majc B, Lah Turnšek T, Breznik B. Proteases regulate cancer stem cell properties and remodel their microenvironment. J Histochem Cytochem. 2021;69:775–94.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Maksimovic-Ivanic D, Fagone P, McCubrey J, Bendtzen K, Mijatovic S, Nicoletti F. HIV-protease inhibitors for the treatment of cancer: repositioning HIV protease inhibitors while developing more potent NO-hybridized derivatives? Int J Cancer. 2017;140:1713–26.

    Article  PubMed  CAS  Google Scholar 

  36. Koltai T. Nelfinavir and other protease inhibitors in cancer: mechanisms involved in anticancer activity. F1000 Res. 2015;4:9.

    Article  Google Scholar 

  37. Moreau P, Richardson PG, Cavo M, Orlowski RZ, San Miguel JF, Palumbo A, et al. Proteasome inhibitors in multiple myeloma: 10 years later. Blood 2012;20:947–59.

    Article  Google Scholar 

  38. Sgadari C, Monini P, Barillari G, Ensoli B. Use of HIV protease inhibitors to block Kaposi’s sarcoma and tumour growth. Lancet Oncol. 2003;4:537–47.

    Article  PubMed  CAS  Google Scholar 

  39. Pyrko P, Kardosh A, Wang W, Xiong W, Schönthal AH, Chen TC. HIV-1 protease inhibitors nelfinavir and atazanavir induce malignant glioma death by triggering endoplasmic reticulum stress. Cancer Res. 2007;67:10920–8.

    Article  PubMed  CAS  Google Scholar 

  40. Kraus M, Müller-Ide H, Rückrich T, Bader J, Overkleeft H, Driessen C. Ritonavir, nelfinavir, saquinavir and lopinavir induce proteotoxic stress in acute myeloid leukemia cells and sensitize them for proteasome inhibitor treatment at low micromolar drug concentrations. Leuk Res. 2014;38:383–92.

    Article  PubMed  CAS  Google Scholar 

  41. Park S, Auyeung A, Lee DL, Lambert PF, Carchman EH, Sherer NM. HIV-1 protease inhibitors slow HPV16-driven cell proliferation through targeted depletion of viral E6 and E7 oncoproteins. Cancers (Basel). 2021;13:949.

    Article  PubMed  CAS  Google Scholar 

  42. Gills JJ, Lopiccolo J, Tsurutani J, Shoemaker RH, Best CJ, Abu-Asab MS, et al. Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin Cancer Res. 2007;13:5183–94.

    Article  PubMed  CAS  Google Scholar 

  43. Rengan R, Mick R, Pryma DA, Lin LL, Christodouleas J, Plastaras JP, et al. Clinical outcomes of the HIV protease inhibitor nelfinavir with concurrent chemoradiotherapy for unresectable stage IIIA/IIIB non-small cell lung cancer: a phase 1/2 trial. JAMA Oncol. 2019;5:1464–72.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gupta AK, Cerniglia GJ, Mick R, McKenna WG, Muschel RJ. HIV protease inhibitors block Akt signaling and radiosensitize tumor cells both in vitro and in vivo. Cancer Res. 2005;65:8256–65.

    Article  PubMed  CAS  Google Scholar 

  45. Pajonk F, Himmelsbach J, Riess K, Sommer A, McBride WH. The human immunodeficiency virus (HIV)-1 protease inhibitor saquinavir inhibits proteasome function and causes apoptosis and radiosensitization in non-HIV-associated human cancer cells. Cancer Res. 2002;62:5230–5.

    PubMed  CAS  Google Scholar 

  46. Chakravarty G, Mathur A, Mallade P, Gerlach S, Willis J, Datta A, et al. Nelfinavir targets multiple drug resistance mechanisms to increase the efficacy of doxorubicin in MCF-7/Dox breast cancer cells. Biochimie. 2016;124:53–64.

    Article  PubMed  CAS  Google Scholar 

  47. Wu Y, Liu X, Qin Z, Hu L, Wang X. Low-frequency ultrasound enhances chemotherapy sensitivity and induces autophagy in PTX-resistant PC-3 cells via the endoplasmic reticulum stress-mediated PI3K/Akt/mTOR signaling pathway. Onco Targets Ther. 2018;11:5621–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Chai GH, Xu Y, Chen SQ, Cheng B, Hu FQ, You J, et al. Transport mechanisms of solid lipid nanoparticles across Caco-2 cell monolayers and their related cytotoxicology. ACS Appl Mater Interfaces. 2016;8:5929–40.

    Article  PubMed  CAS  Google Scholar 

  49. Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21:85–100.

    Article  PubMed  CAS  Google Scholar 

  50. Walensky LD. Targeting BAX to drug death directly. Nat Chem Biol. 2019;15:657–65.

    Article  PubMed  CAS  Google Scholar 

  51. Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20:175–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Deshwal S, Fiedler KU, Langer T. Mitochondrial proteases: multifaceted regulators of mitochondrial plasticity. Annu Rev Biochem. 2020;89:501–28.

    Article  PubMed  CAS  Google Scholar 

  53. Green DR. The mitochondrial pathway of apoptosis: Part I: MOMP and beyond. Cold Spring Harb Perspect Biol. 2022;14:a041038.

    Article  PubMed  CAS  Google Scholar 

  54. Emdad L, Bhoopathi P, Talukdar S, Pradhan AK, Sarkar D, Wang XY, et al. Recent insights into apoptosis and toxic autophagy: the roles of MDA-7/IL-24, a multidimensional anti-cancer therapeutic. Semin Cancer Biol. 2020;66:140–54.

    Article  PubMed  CAS  Google Scholar 

  55. Menezes ME, Bhoopathi P, Pradhan AK, Emdad L, Das SK, Guo C, et al. Role of MDA-7/IL-24 a multifunction protein in human diseases. Adv Cancer Res. 2018;138:143–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Bhutia SK, Das SK, Azab B, Menezes ME, Dent P, Wang XY, et al. Targeting breast cancer-initiating/stem cells with melanoma differentiation-associated gene-7/interleukin-24. Int J Cancer. 2013;133:2726–36.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Kim JY, Kim JC, Lee JY, Park MJ. Oct4 suppresses IR induced premature senescence in breast cancer cells through STAT3- and NF-κB-mediated IL-24 production. Int J Oncol. 2018;53:47–58.

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Chen HC, Kanai M, Inoue-Yamauchi A, Tu HC, Huang Y, Ren D, et al. An interconnected hierarchical model of cell death regulation by the BCL-2 family. Nat Cell Biol. 2015;17:1270–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. O’Neill KL, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 2016;30:973–88.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Otkjaer K, Holtmann H, Kragstrup TW, Paludan SR, Johansen C, Gaestel M, et al. The p38 MAPK regulates IL-24 expression by stabilization of the 3’ UTR of IL-24 mRNA. PLoS One. 2010;5:e8671.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010;429:403–17.

    Article  PubMed  CAS  Google Scholar 

  62. Back NK, van Wijk A, Remmerswaal D, van Monfort M, Nijhuis M, Schuurman R, et al. In-vitro tipranavir susceptibility of HIV-1 isolates with reduced susceptibility to other protease inhibitors. AIDS. 2000;14:101–2.

    Article  PubMed  CAS  Google Scholar 

  63. Larder BA, Hertogs K, Bloor S, van den Eynde CH, DeCian W, Wang Y, et al. Tipranavir inhibits broadly protease inhibitor-resistant HIV-1 clinical samples. AIDS. 2000;14:1943–8.

    Article  PubMed  CAS  Google Scholar 

  64. Rusconi S, La Seta Catamancio S, Citterio P, Kurtagic S, Violin M, Balotta C, et al. Susceptibility to PNU-140690 (Tipranavir) of human immunodeficiency virus type 1 isolates derived from patients with multidrug resistance to other protease inhibitors. Antimicrob Agents Chemother. 2000;44:1328–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Fisher PB, Gopalkrishnan RV, Chada S, Ramesh R, Grimm EA, Rosenfeld MR, et al. mda-7/IL-24, a novel cancer selective apoptosis inducing cytokine gene: from the laboratory into the clinic. Cancer Biol Ther. 2003;2:S23–37.

    Article  PubMed  CAS  Google Scholar 

  66. Tong AW, Nemunaitis J, Su D, Zhang Y, Cunningham C, Senzer N, et al. Intratumoral injection of INGN 241, a nonreplicating adenovector expressing the melanoma-differentiation associated gene-7 (mda-7/IL24): biologic outcome in advanced cancer patients. Mol Ther. 2005;11:160–72.

    Article  PubMed  CAS  Google Scholar 

  67. Cunningham CC, Chada S, Merritt JA, Tong A, Senzer N, Zhang Y, et al. Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I study. Mol Ther. 2005;11:149–59.

    Article  PubMed  CAS  Google Scholar 

  68. Yan S, Zhang H, Xie Y, Sheng W, Xiang J, Ye Z, et al. Recombinant human interleukin-24 suppresses gastric carcinoma cell growth in vitro and in vivo. Cancer Invest. 2010;28:85–93.

    Article  PubMed  CAS  Google Scholar 

  69. Menezes ME, Bhatia S, Bhoopathi P, Das SK, Emdad L, Dasgupta S, et al. MDA-7/IL-24: multifunctional cancer killing cytokine. Adv Exp Med Biol. 2014;818:127–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Pei DS, Yang ZX, Zhang BF, Yin XX, Li LT, Li HZ, et al. Enhanced apoptosis-inducing function of MDA-7/IL-24 RGD mutant via the increased adhesion to tumor cells. J Interferon Cytokine Res. 2012;32:66–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Madireddi MT, Dent P, Fisher PB. AP-1 and C/EBP transcription factors contribute to mda-7 gene promoter activity during human melanoma differentiation. J Cell Physiol. 2000;185:36–46.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Xian-ming Mo (Sichuan University) for providing the GCSC cells. We thank Dr. Xiang-wei Wang and Dr. Yu-qi Wu (Shenzhen University General Hospital) for providing the PC3/Tax cells. We also thank Dr. Wen Su (Shenzhen University) for help in histological examination. This work was supported by grants from the National Natural Science Foundation of China (82173003), the Science and Technology Foundation of Shenzhen (JCYJ20200109113810154), the Science and Technology Program of Guangdong Province in China (2019B030301009), the Industry and Information Technology Foundation of Shenzhen (20180309100135860), the SZU Top Ranking Project (86000000210) and the Guangdong Basic and Applied Basic Research Foundation (2020A1515010989 and 2018A030310586).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JXX and LF; methodology: JXX, YTL, XYT, and LF; investigation: JXX, YTL, XYT, and TC; writing: JXX and LF; funding acquisition: JXX and LF; resources: BHL; supervision: JXX and LF.

Corresponding authors

Correspondence to Ji-xian Xiong or Li Fu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the institutional review board of Shenzhen University. Informed consent was obtained for the original work that produced human tissue samples.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Jx., Li, Yt., Tan, Xy. et al. Targeting PRSS23 with tipranavir induces gastric cancer stem cell apoptosis and inhibits growth of gastric cancer via the MKK3/p38 MAPK-IL24 pathway. Acta Pharmacol Sin 45, 405–421 (2024). https://doi.org/10.1038/s41401-023-01165-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01165-9

Keywords

This article is cited by

Search

Quick links