Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PACAP/PAC1-R activation contributes to hyperalgesia in 6-OHDA-induced Parkinson’s disease model rats via promoting excitatory synaptic transmission of spinal dorsal horn neurons

Abstract

Pain is a common annoying non-motor symptom in Parkinson’s disease (PD) that causes distress to patients. Treatment for PD pain remains a big challenge, as its underlying mechanisms are elusive. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1-R play important roles in regulating a variety of pathophysiological processes. In this study, we investigated whether PACAP/PAC1-R signaling was involved in the mechanisms of PD pain. 6-hydroxydopamine (6-OHDA)-induced PD model was established in rats. Behavioral tests, electrophysiological and Western blotting analysis were conducted 3 weeks later. We found that 6-OHDA rats had significantly lower mechanical paw withdrawal 50% threshold in von Frey filament test and shorter tail flick latency, while mRNA levels of Pacap and Adcyap1r1 (gene encoding PAC1-R) in the spinal dorsal horn were significantly upregulated. Whole-cell recordings from coronal spinal cord slices at L4–L6 revealed that the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in dorsal horn neurons was significantly increased, which was reversed by application of a PAC1-R antagonist PACAP 6–38 (250 nM). Furthermore, we demonstrated that intrathecal microinjection of PACAP 6–38 (0.125, 0.5, 2 μg) dose-dependently ameliorated the mechanical and thermal hyperalgesia in 6-OHDA rats. Inhibition of PACAP/PAC1-R signaling significantly suppressed the activation of Ca2+/calmodulin-dependent protein kinase II and extracellular signal-regulated kinase (ERK) in spinal dorsal horn of 6-OHDA rats. Microinjection of pAAV-Adcyap1r1 into L4–L6 spinal dorsal horn alleviated hyperalgesia in 6-OHDA rats. Intrathecal microinjection of ERK antagonist PD98059 (10 μg) significantly alleviated hyperalgesia in 6-OHDA rats associated with the inhibition of sEPSCs in dorsal horn neurons. In addition, we found that serum PACAP-38 concentration was significantly increased in PD patients with pain, and positively correlated with numerical rating scale score. In conclusion, activation of PACAP/PAC1-R induces the development of PD pain and targeting PACAP/PAC1-R is an alternative strategy for treating PD pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Behavior tests and level of PACAP-38 in spinal dorsal horn of rats after bilateral lesions of SNpc DA neurons with 6-OHDA.
Fig. 2: Inhibiting PACAP/PAC1-R by PACAP 6–38 attenuated hyperalgesia in 6-OHDA-lesioned rats.
Fig. 3: Inhibiting PACAP/PAC1-R signaling relieved the enhanced sEPSCs of the spinal dorsal horn neurons of 6-OHDA rats.
Fig. 4: PACAP/PAC1-R upregulated the phosphorylation of CaMKII and ERK, but not P38, in the spinal dorsal horn of 6-OHDA rats.
Fig. 5: Microinjection of pAAV-Adcyap1r1 into the L4–L6 spinal dorsal horn alleviated 6-OHDA-lesion-induced mechanical allodynia and thermal hyperalgesia in rats.
Fig. 6: Inhibition of ERK alleviated hyperalgesia and decreased excitatory synaptic transmission of spinal dorsal horn neurons of 6-OHDA-lesioned rats.
Fig. 7: Correlation analysis of serum PACAP-38 levels and pain severity.

Similar content being viewed by others

References

  1. Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol. 2020;27:27–42.

    Article  CAS  PubMed  Google Scholar 

  2. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397:2284–303.

    Article  CAS  PubMed  Google Scholar 

  3. Silverdale MA, Kobylecki C, Kass-Iliyya L, Martinez-Martin P, Lawton M, Cotterill S, et al. A detailed clinical study of pain in 1957 participants with early/moderate Parkinson’s disease. Parkinsonism Relat Disord. 2018;56:27–32.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Seppi K, Ray Chaudhuri K, Coelho M, Fox SH, Katzenschlager R, Perez Lloret S, et al. Update on treatments for nonmotor symptoms of Parkinson’s disease-an evidence-based medicine review. Mov Disord. 2019;34:180–98.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Campos ACP, Berzuino MB, Hernandes MS, Fonoff ET, Pagano RL. Monoaminergic regulation of nociceptive circuitry in a Parkinson’s disease rat model. Exp Neurol. 2019;318:12–21.

    Article  CAS  PubMed  Google Scholar 

  6. Domenici RA, Campos ACP, Maciel ST, Berzuino MB, Hernandes MS, Fonoff ET, et al. Parkinson’s disease and pain: modulation of nociceptive circuitry in a rat model of nigrostriatal lesion. Exp Neurol. 2019;315:72–81.

    Article  PubMed  Google Scholar 

  7. Biagioni F, Vivacqua G, Lazzeri G, Ferese R, Iannacone S, Onori P, et al. Chronic MPTP in mice damage-specific neuronal phenotypes within dorsal laminae of the spinal cord. Neurotox Res. 2021;39:156–69.

    Article  CAS  PubMed  Google Scholar 

  8. Denes V, Geck P, Mester A, Gabriel R. Pituitary adenylate cyclase-activating polypeptide: 30 years in research spotlight and 600 million years in service. J Clin Med. 2019;8:1488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lam HC, Takahashi K, Ghatei MA, Kanse SM, Polak JM, Bloom SR. Binding sites of a novel neuropeptide pituitary-adenylate-cyclase-activating polypeptide in the rat brain and lung. Eur J Biochem. 1990;193:725–9.

    Article  CAS  PubMed  Google Scholar 

  10. Gottschall PE, Tatsuno I, Miyata A, Arimura A. Characterization and distribution of binding sites for the hypothalamic peptide, pituitary adenylate cyclase-activating polypeptide. Endocrinology. 1990;127:272–7.

    Article  CAS  PubMed  Google Scholar 

  11. Mabuchi T, Shintani N, Matsumura S, Okuda-Ashitaka E, Hashimoto H, Muratani T, et al. Pituitary adenylate cyclase-activating polypeptide is required for the development of spinal sensitization and induction of neuropathic pain. J Neurosci. 2004;24:7283–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sandor K, Kormos V, Botz B, Imreh A, Bolcskei K, Gaszner B, et al. Impaired nocifensive behaviours and mechanical hyperalgesia, but enhanced thermal allodynia in pituitary adenylate cyclase-activating polypeptide deficient mice. Neuropeptides. 2010;44:363–71.

    Article  CAS  PubMed  Google Scholar 

  13. Botz B, Imreh A, Sandor K, Elekes K, Szolcsanyi J, Reglodi D, et al. Role of pituitary adenylate-cyclase activating polypeptide and Tac1 gene derived tachykinins in sensory, motor and vascular functions under normal and neuropathic conditions. Peptides. 2013;43:105–12.

    Article  CAS  PubMed  Google Scholar 

  14. Jongsma H, Pettersson LM, Zhang Y, Reimer MK, Kanje M, Waldenstrom A, et al. Markedly reduced chronic nociceptive response in mice lacking the PAC1 receptor. Neuroreport. 2001;12:2215–9.

    Article  CAS  PubMed  Google Scholar 

  15. Hoffmann J, Miller S, Martins-Oliveira M, Akerman S, Supronsinchai W, Sun H, et al. PAC1 receptor blockade reduces central nociceptive activity: New approach for primary headache? Pain. 2020;161:1670–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ohsawa M, Brailoiu GC, Shiraki M, Dun NJ, Paul K, Tseng LF. Modulation of nociceptive transmission by pituitary adenylate cyclase activating polypeptide in the spinal cord of the mouse. Pain. 2002;100:27–34.

    Article  CAS  PubMed  Google Scholar 

  17. Velasco ER, Florido A, Flores A, Senabre E, Gomez-Gomez A, Torres A, et al. PACAP-PAC1R modulates fear extinction via the ventromedial hypothalamus. Nat Commun. 2022;13:4374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baskozos G, Sandy-Hindmarch O, Clark AJ, Windsor K, Karlsson P, Weir GA, et al. Molecular and cellular correlates of human nerve regeneration: ADCYAP1/PACAP enhance nerve outgrowth. Brain. 2020;143:2009–26.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee EY, Chan LC, Wang H, Lieng J, Hung M, Srinivasan Y, et al. PACAP is a pathogen-inducible resident antimicrobial neuropeptide affording rapid and contextual molecular host defense of the brain. Proc Natl Acad Sci USA. 2021;118:e1917623117.

    Article  CAS  PubMed  Google Scholar 

  20. Gupte RP, Kadunganattil S, Shepherd AJ, Merrill R, Planer W, Bruchas MR, et al. Convergent phosphomodulation of the major neuronal dendritic potassium channel Kv4.2 by pituitary adenylate cyclase-activating polypeptide. Neuropharmacology. 2016;101:291–308.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson GC, Parsons R, May V, Hammack SE. The role of pituitary adenylate cyclase-activating polypeptide (PACAP) signaling in the hippocampal dentate gyrus. Front Cell Neurosci. 2020;14:111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu NJ, Schnell SA, Schulz S, Wessendorf MW, Gintzler AR. Regulation of spinal dynorphin 1-17 release by endogenous pituitary adenylyl cyclase-activating polypeptide in the male rat: relevance of excitation via disinhibition. J Pharmacol Exp Ther. 2011;336:328–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang CT, Mao CJ, Zhang XQ, Zhang CY, Lv DJ, Yang YP, et al. Attenuation of hyperalgesia responses via the modulation of 5-hydroxytryptamine signalings in the rostral ventromedial medulla and spinal cord in a 6-hydroxydopamine-induced rat model of Parkinson’s disease. Mol Pain. 2017;13:1–13.

    Article  Google Scholar 

  24. Li CJ, Zhang LG, Liu LB, An MQ, Dong LG, Gu HY, et al. Inhibition of spinal 5-HT3 receptor and spinal dorsal horn neuronal excitability alleviates hyperalgesia in a rat model of Parkinson’s disease. Mol Neurobiol. 2022;59:7253–64.

    Article  CAS  PubMed  Google Scholar 

  25. Buhidma Y, Rukavina K, Chaudhuri KR, Duty S. Potential of animal models for advancing the understanding and treatment of pain in Parkinson’s disease. NPJ Parkinsons Dis. 2020;6:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Christensen SL, Hansen RB, Storm MA, Olesen J, Hansen TF, Ossipov M, et al. Von Frey testing revisited: provision of an online algorithm for improved accuracy of 50% thresholds. Eur J Pain. 2020;24:783–90.

    Article  PubMed  Google Scholar 

  27. Narita M, Dun SL, Dun NJ, Tseng LF. Hyperalgesia induced by pituitary adenylate cyclase-activating polypeptide in the mouse spinal cord. Eur J Pharmacol. 1996;311:121–6.

    Article  CAS  PubMed  Google Scholar 

  28. Cao DL, Zhang ZJ, Xie RG, Jiang BC, Ji RR, Gao YJ. Chemokine CXCL1 enhances inflammatory pain and increases NMDA receptor activity and COX-2 expression in spinal cord neurons via activation of CXCR2. Exp Neurol. 2014;261:328–36.

    Article  CAS  PubMed  Google Scholar 

  29. Li YC, Tian YQ, Wu YY, Xu YC, Zhang PA, Sha J, et al. Upregulation of spinal ASIC1 and NKCC1 expression contributes to chronic visceral pain in rats. Front Mol Neurosci. 2020;13:611179.

    Article  CAS  PubMed  Google Scholar 

  30. Varodayan FP, Minnig MA, Steinman MQ, Oleata CS, Riley MW, Sabino V, et al. PACAP regulation of central amygdala GABAergic synapses is altered by restraint stress. Neuropharmacology. 2020;168:107752.

    Article  CAS  PubMed  Google Scholar 

  31. Yin Y, Huang P, Han Z, Wei G, Zhou C, Wen J, et al. Collagen nanofibers facilitated presynaptic maturation in differentiated neurons from spinal-cord-derived neural stem cells through MAPK/ERK1/2-Synapsin I signaling pathway. Biomacromolecules. 2014;15:2449–60.

    Article  CAS  PubMed  Google Scholar 

  32. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30:1591–601.

    Article  PubMed  Google Scholar 

  33. Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, et al. Chronic pain as a symptom or a disease: the IASP classification of chronic pain for the international classification of diseases (ICD-11). Pain. 2019;160:19–27.

    Article  PubMed  Google Scholar 

  34. Ford B. Pain in Parkinson’s disease. Mov Disord. 2010;25:S98–103.

    Article  PubMed  Google Scholar 

  35. Chaudhuri KR, Rizos A, Trenkwalder C, Rascol O, Pal S, Martino D, et al. King’s Parkinson’s disease pain scale, the first scale for pain in PD: An international validation. Mov Disord. 2015;30:1623–31.

    Article  PubMed  Google Scholar 

  36. Johnson GC, May V, Parsons RL, Hammack SE. Parallel signaling pathways of pituitary adenylate cyclase activating polypeptide (PACAP) regulate several intrinsic ion channels. Ann NY Acad Sci. 2019;1455:105–12.

    Article  CAS  PubMed  Google Scholar 

  37. May V, Johnson GC, Hammack SE, Braas KM, Parsons RL. PAC1 receptor internalization and endosomal MEK/ERK activation is essential for PACAP-mediated neuronal excitability. J Mol Neurosci. 2021;71:1536–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yokai M, Kurihara T, Miyata A. Spinal astrocytic activation contributes to both induction and maintenance of pituitary adenylate cyclase-activating polypeptide type 1 receptor-induced long-lasting mechanical allodynia in mice. Mol Pain. 2016;12:1744806916646383.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Faivre F, Sanchez-Catalan MJ, Dovero S, Bido S, Joshi A, Bezard E, et al. Ablation of the tail of the ventral tegmental area compensates symptoms in an experimental model of Parkinson’s disease. Neurobiol Dis. 2020;139:104818.

    Article  CAS  PubMed  Google Scholar 

  40. Qu S, Ondo WG, Zhang X, Xie WJ, Pan TH, Le WD. Projections of diencephalic dopamine neurons into the spinal cord in mice. Exp Brain Res. 2006;168:152–6.

    Article  CAS  PubMed  Google Scholar 

  41. Tang DL, Luan YW, Zhou CY, Xiao C. D2 receptor activation relieves pain hypersensitivity by inhibiting superficial dorsal horn neurons in parkinsonian mice. Acta Pharmacol Sin. 2021;42:189–98.

    Article  PubMed  Google Scholar 

  42. Taniguchi W, Nakatsuka T, Miyazaki N, Yamada H, Takeda D, Fujita T, et al. In vivo patch-clamp analysis of dopaminergic antinociceptive actions on substantia gelatinosa neurons in the spinal cord. Pain. 2011;152:95–105.

    Article  CAS  PubMed  Google Scholar 

  43. Zheng Y, Zhang L, Xie J, Shi L. The emerging role of neuropeptides in Parkinson’s disease. Front Aging Neurosci. 2021;13:646726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang Q, Han X, Wu H, Zhang M, Hu G, Dong Z, et al. Dynamic changes in CGRP, PACAP, and PACAP receptors in the trigeminovascular system of a novel repetitive electrical stimulation rat model: relevant to migraine. Mol Pain. 2019;15:1744806918820452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davis-Taber R, Baker S, Lehto SG, Zhong C, Surowy CS, Faltynek CR, et al. Central pituitary adenylate cyclase 1 receptors modulate nociceptive behaviors in both inflammatory and neuropathic pain states. J Pain. 2008;9:449–56.

    Article  CAS  PubMed  Google Scholar 

  46. Del Tredici K, Braak H. Spinal cord lesions in sporadic Parkinson’s disease. Acta Neuropathol. 2012;124:643–64.

    Article  PubMed  Google Scholar 

  47. Perrotta A, Sandrini G, Serrao M, Buscone S, Tassorelli C, Tinazzi M, et al. Facilitated temporal summation of pain at spinal level in Parkinson’s disease. Mov Disord. 2011;26:442–8.

    Article  PubMed  Google Scholar 

  48. Charles KA, Naudet F, Bouali-Benazzouz R, Landry M, De Deurwaerdere P, Fossat P, et al. Alteration of nociceptive integration in the spinal cord of a rat model of Parkinson’s disease. Mov Disord. 2018;33:1010–5.

    Article  CAS  PubMed  Google Scholar 

  49. Missig G, Mei L, Vizzard MA, Braas KM, Waschek JA, Ressler KJ, et al. Parabrachial pituitary adenylate cyclase-activating polypeptide activation of amygdala endosomal extracellular signal-regulated kinase signaling regulates the emotional component of pain. Biol Psychiatry. 2017;81:671–82.

    Article  CAS  PubMed  Google Scholar 

  50. Akerman S, Goadsby PJ. Neuronal PAC1 receptors mediate delayed activation and sensitization of trigeminocervical neurons: relevance to migraine. Sci Transl Med. 2015;7:308ra157.

    Article  PubMed  Google Scholar 

  51. Amin FM, Hougaard A, Schytz HW, Asghar MS, Lundholm E, Parvaiz AI, et al. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. Brain. 2014;137:779–94.

    Article  PubMed  Google Scholar 

  52. Kammermeier PJ. Endogenous homer proteins regulate metabotropic glutamate receptor signaling in neurons. J Neurosci. 2008;28:8560–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Michel S, Itri J, Han JH, Gniotczynski K, Colwell CS. Regulation of glutamatergic signalling by PACAP in the mammalian suprachiasmatic nucleus. BMC Neurosci. 2006;7:15.

    Article  PubMed  PubMed Central  Google Scholar 

  54. May V, Clason TA, Buttolph TR, Girard BM, Parsons RL. Calcium influx, but not intracellular calcium release, supports PACAP-mediated ERK activation in HEK PAC1 receptor cells. J Mol Neurosci. 2014;54:342–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Langer I, Jeandriens J, Couvineau A, Sanmukh S, Latek D. Signal transduction by VIP and PACAP receptors. Biomedicines. 2022;10:406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Q, Cao DL, Zhang ZJ, Jiang BC, Gao YJ. Chemokine CXCL13 mediates orofacial neuropathic pain via CXCR5/ERK pathway in the trigeminal ganglion of mice. J Neuroinflamm. 2016;13:183.

    Article  Google Scholar 

  57. Stamboulian S, Choi JS, Ahn HS, Chang YW, Tyrrell L, Black JA, et al. ERK1/2 mitogen-activated protein kinase phosphorylates sodium channel Na(v)1.7 and alters its gating properties. J Neurosci. 2010;30:1637–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ermilov LG, Schmalz PF, Miller SM, Szurszewski JH. PACAP modulation of the colon-inferior mesenteric ganglion reflex in the guinea pig. J Physiol. 2004;560:231–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Otto C, Kovalchuk Y, Wolfer DP, Gass P, Martin M, Zuschratter W, et al. Impairment of mossy fiber long-term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor-deficient mice. J Neurosci. 2001;21:5520–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pugh PC, Jayakar SS, Margiotta JF. PACAP/PAC1R signaling modulates acetylcholine release at neuronal nicotinic synapses. Mol Cell Neurosci. 2010;43:244–57.

    Article  CAS  PubMed  Google Scholar 

  61. Komatsu T, Sakurada C, Sasaki M, Sanai K, Tsuzuki M, Bagetta G, et al. Extracellular signal-regulated kinase (ERK) and nitric oxide synthase mediate intrathecal morphine-induced nociceptive behavior. Neuropharmacology. 2007;52:1237–43.

    Article  CAS  PubMed  Google Scholar 

  62. Paredes S, Cantillo S, Candido KD, Knezevic NN. An association of serotonin with pain disorders and its modulation by estrogens. Int J Mol Sci. 2019;20:5729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hu S, Huang S, Ma J, Li D, Zhao Z, Zheng J, et al. Correlation of decreased serum pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide levels with non-motor symptoms in patients with Parkinson’s disease. Front Aging Neurosci. 2021;13:689939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Han P, Liang W, Baxter LC, Yin J, Tang Z, Beach TG, et al. Pituitary adenylate cyclase-activating polypeptide is reduced in Alzheimer disease. Neurology. 2014;82:1724–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pham D, Polgar B, Toth T, Jungling A, Kovacs N, Balas I, et al. Examination of pituitary adenylate cyclase-activating polypeptide in Parkinson’s disease focusing on correlations with motor symptoms. Geroscience. 2022;44:785–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wong CK, Mak RY, Kwok TS, Tsang JS, Leung MY, Funabashi M, et al. Prevalence, incidence, and factors associated with non-specific chronic low back pain in community-dwelling older adults aged 60 years and older: a systematic review and meta-analysis. J Pain. 2022;23:509–34.

    Article  PubMed  Google Scholar 

  67. Ha AD, Jankovic J. Pain in Parkinson’s disease. Mov Disord. 2012;27:485–91.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (82071420, 82271279), Jiangsu Provincial Key R&D Program (BE2018658), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Guang-yin Xu for critical discussions of the data in the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CFL designed the study, and revised the manuscript. FW performed experiments, supervised the experiments and edited the manuscript. CJM collected data and edited the manuscript. LGD performed experiments, collected data, analyzed data and prepared figures and the manuscript. MQA performed experiments, collected data, and prepared figures. HYG, LGZ, CJL, and JBZ performed experiments and analyzed data. All the authors have read and approved the paper. The authors have no conflicts of interest to declare.

Corresponding author

Correspondence to Chun-feng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Lg., An, Mq., Gu, Hy. et al. PACAP/PAC1-R activation contributes to hyperalgesia in 6-OHDA-induced Parkinson’s disease model rats via promoting excitatory synaptic transmission of spinal dorsal horn neurons. Acta Pharmacol Sin 44, 2418–2431 (2023). https://doi.org/10.1038/s41401-023-01141-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01141-3

Keywords

Search

Quick links