Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fisetin treatment alleviates kidney injury in mice with diabetes-exacerbated atherosclerosis through inhibiting CD36/fibrosis pathway

Abstract

Diabetes-related vascular complications include diabetic cardiovascular diseases (CVD), diabetic nephropathy (DN) and diabetic retinopathy, etc. DN can promote the process of end-stage renal disease. On the other hand, atherosclerosis accelerates kidney damage. It is really an urge to explore the mechanisms of diabetes-exacerbated atherosclerosis as well as new agents for treatment of diabetes-exacerbated atherosclerosis and the complications. In this study we investigated the therapeutic effects of fisetin, a natural flavonoid from fruits and vegetables, on kidney injury caused by streptozotocin (STZ)-induced diabetic atherosclerosis in low density lipoprotein receptor deficient (LDLR−/−) mice. Diabetes was induced in LDLR−/− mice by injecting STZ, and the mice were fed high-fat diet (HFD) containing fisetin for 12 weeks. We found that fisetin treatment effectively attenuated diabetes-exacerbated atherosclerosis. Furthermore, we showed that fisetin treatment significantly ameliorated atherosclerosis-enhanced diabetic kidney injury, evidenced by regulating uric acid, urea and creatinine levels in urine and serum, and ameliorating morphological damages and fibrosis in the kidney. In addition, we found that the improvement of glomerular function by fisetin was mediated by reducing the production of reactive oxygen species (ROS), advanced glycosylation end products (AGEs) and inflammatory cytokines. Furthermore, fisetin treatment reduced accumulation of extracellular matrix (ECM) in the kidney by inhibiting the expression of vascular endothelial growth factor A (VEGFA), fibronectin and collagens, while enhancing matrix metalloproteinases 2 (MMP2) and MMP9, which was mainly mediated by inactivating transforming growth factor β (TGFβ)/SMAD family member 2/3 (Smad2/3) pathways. In both in vivo and in vitro experiments, we demonstrated that the therapeutic effects of fisetin on kidney fibrosis resulted from inhibiting CD36 expression. In conclusion, our results suggest that fisetin is a promising natural agent for the treatment of renal injury caused by diabetes and atherosclerosis. We reveal that fisetin is an inhibitor of CD36 for reducing the progression of kidney fibrosis, and fisetin-regulated CD36 may be a therapeutic target for the treatment of renal fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fisetin improves STZ-impaired kidney function.
Fig. 2: Fisetin reduces collagen levels, while increases MMP2 and MMP9 expression in kidneys of diabetic LDLR−/− mice.
Fig. 3: Fisetin reduces AGEs and inflammatory cytokines in LDLR−/− mice kidneys.
Fig. 4: Fisetin improves renal fibrosis in diabetic LDLR−/− mice via reducing TGFβ1-CD36 pathway.
Fig. 5: Fisetin improves TGFβ-induced fibrosis through reducing PPARγ/CD36 signaling pathway in HK-2 cells.

Similar content being viewed by others

References

  1. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pr. 2010;87:4–14.

    Article  CAS  Google Scholar 

  2. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pr. 2018;138:271–81.

    Article  CAS  Google Scholar 

  3. Dal Canto E, Ceriello A, Ryden L, Ferrini M, Hansen TB, Schnell O, et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol. 2019;26:25–32.

    Article  PubMed  Google Scholar 

  4. Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: Cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus - mechanisms, management, and clinical considerations. Circulation. 2016;133:2459–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. American Diabetes A. Introduction: Standards of medical care in diabetes-2022. Diabetes Care. 2022;45:S1–S2.

    Article  Google Scholar 

  6. Sagoo MK, Gnudi L. Diabetic nephropathy: An overview. Methods Mol Biol. 2020;2067:3–7.

    Article  CAS  PubMed  Google Scholar 

  7. Tan AL, Forbes JM, Cooper ME. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol. 2007;27:130–43.

    Article  CAS  PubMed  Google Scholar 

  8. Li SY, Huang PH, Yang AH, Tarng DC, Yang WC, Lin CC, et al. Matrix metalloproteinase-9 deficiency attenuates diabetic nephropathy by modulation of podocyte functions and dedifferentiation. Kidney Int. 2014;86:358–69.

    Article  CAS  PubMed  Google Scholar 

  9. Elmarakby AA, Sullivan JC. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther. 2012;30:49–59.

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka T. A mechanistic link between renal ischemia and fibrosis. Med Mol Morphol. 2017;50:1–8.

    Article  CAS  PubMed  Google Scholar 

  11. Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol. 2003;14:1358–73.

    Article  CAS  PubMed  Google Scholar 

  12. Tomino Y, Hagiwara S, Gohda T. AGE-RAGE interaction and oxidative stress in obesity-related renal dysfunction. Kidney Int. 2011;80:133–5.

    Article  CAS  PubMed  Google Scholar 

  13. Abo-Kadoum MA, Assad M, Uae M, Nzaou SAE, Gong Z, Moaaz A, et al. Mycobacterium tuberculosis RKIP (Rv2140c) dephosphorylates ERK/NF-kappaB upstream signaling molecules to subvert macrophage innate immune response. Infect Genet Evol. 2021;94:105019.

    Article  CAS  PubMed  Google Scholar 

  14. Yang X, Okamura DM, Lu X, Chen Y, Moorhead J, Varghese Z, et al. CD36 in chronic kidney disease: novel insights and therapeutic opportunities. Nat Rev Nephrol. 2017;13:769–81.

    Article  CAS  PubMed  Google Scholar 

  15. Yang YL, Lin SH, Chuang LY, Guh JY, Liao TN, Lee TC, et al. CD36 is a novel and potential anti-fibrogenic target in albumin-induced renal proximal tubule fibrosis. J Cell Biochem. 2007;101:735–44.

    Article  CAS  PubMed  Google Scholar 

  16. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khan N, Syed DN, Ahmad N, Mukhtar H. Fisetin: A dietary antioxidant for health promotion. Antioxid Redox Signal. 2013;19:151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Prasath GS, Pillai SI, Subramanian SP. Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats. Eur J Pharmacol. 2014;740:248–54.

    Article  CAS  PubMed  Google Scholar 

  20. Chenxu G, Xianling D, Qin K, Linfeng H, Yan S, Mingxin X, et al. Fisetin protects against high fat diet-induced nephropathy by inhibiting inflammation and oxidative stress via the blockage of iRhom2/NF-kappaB signaling. Int Immunopharmacol. 2021;92:107353.

    Article  PubMed  Google Scholar 

  21. Althunibat OY, Al Hroob AM, Abukhalil MH, Germoush MO, Bin-Jumah M, Mahmoud AM. Fisetin ameliorates oxidative stress, inflammation and apoptosis in diabetic cardiomyopathy. Life Sci. 2019;221:83–92.

    Article  CAS  PubMed  Google Scholar 

  22. Liang Y, Han H, Liu L, Duan Y, Yang X, Ma C, et al. CD36 plays a critical role in proliferation, migration and tamoxifen-inhibited growth of ER-positive breast cancer cells. Oncogenesis. 2018;7:98.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu X, Li J, Liao J, Wang H, Huang X, Dong Z, et al. Gpihbp1 deficiency accelerates atherosclerosis and plaque instability in diabetic LDLR−/− mice. Atherosclerosis. 2019;282:100–9.

    Article  CAS  PubMed  Google Scholar 

  24. Yang S, Chen Y, Duan Y, Ma C, Liu L, Li Q, et al. Therapeutic potential of NaoXinTong Capsule on the developed diabetic nephropathy in db/db mice. Biomed Pharmacother. 2019;118:109389.

    Article  CAS  PubMed  Google Scholar 

  25. Ekinci EI, Jerums G, Skene A, Crammer P, Power D, Cheong KY, et al. Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabetes Care. 2013;36:3620–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo L, Wu C. Regulation of fibronectin matrix deposition and cell proliferation by the PINCH-ILK-CH-ILKBP complex. FASEB J. 2002;16:1298–300.

    Article  CAS  PubMed  Google Scholar 

  27. Shui HA, Ka SM, Lin JC, Lee JH, Jin JS, Lin YF, et al. Fibronectin in blood invokes the development of focal segmental glomerulosclerosis in mouse model. Nephrol Dial Transpl. 2006;21:1794–802.

    Article  CAS  Google Scholar 

  28. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N, et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest. 2003;111:707–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Su J, Li SJ, Chen ZH, Zeng CH, Zhou H, Li LS, et al. Evaluation of podocyte lesion in patients with diabetic nephropathy: Wilms’ tumor-1 protein used as a podocyte marker. Diabetes Res Clin Pr. 2010;87:167–75.

    Article  CAS  Google Scholar 

  30. Catania JM, Chen G, Parrish AR. Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Ren Physiol. 2007;292:F905–11.

    Article  CAS  Google Scholar 

  31. Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247–60.

    Article  CAS  PubMed  Google Scholar 

  32. Lan HY, Chung AC. TGF-beta/Smad signaling in kidney disease. Semin Nephrol. 2012;32:236–43.

    Article  CAS  PubMed  Google Scholar 

  33. Geovanini GR, Libby P. Atherosclerosis and inflammation: Overview and updates. Clin Sci (Lond). 2018;132:1243–52.

    Article  CAS  PubMed  Google Scholar 

  34. Hada Y, Uchida HA, Wada J. Fisetin attenuates lipopolysaccharide-induced inflammatory responses in macrophage. Biomed Res Int. 2021;2021:5570885.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kwak S, Ku SK, Bae JS. Fisetin inhibits high-glucose-induced vascular inflammation in vitro and in vivo. Inflamm Res. 2014;63:779–87.

    Article  CAS  PubMed  Google Scholar 

  36. Lian TW, Wang L, Lo YH, Huang IJ, Wu MJ. Fisetin, morin and myricetin attenuate CD36 expression and oxLDL uptake in U937-derived macrophages. Biochim Biophys Acta. 2008;1781:601–9.

    Article  CAS  PubMed  Google Scholar 

  37. Varghese JF, Patel R, Singh M, Yadav UCS. Fisetin prevents oxidized low-density lipoprotein-induced macrophage foam cell formation. J Cardiovasc Pharmacol. 2021;78:e729–e37.

    Article  CAS  PubMed  Google Scholar 

  38. Patel R, Varghese JF, Singh RP, Yadav UCS. Induction of endothelial dysfunction by oxidized low-density lipoproteins via downregulation of Erk-5/Mef2c/KLF2 signaling: Amelioration by fisetin. Biochimie. 2019;163:152–62.

    Article  CAS  PubMed  Google Scholar 

  39. Yan L, Jia Q, Cao H, Chen C, Xing S, Huang Y, et al. Fisetin ameliorates atherosclerosis by regulating PCSK9 and LOX-1 in apoE−/− mice. Exp Ther Med. 2021;21:25.

    CAS  PubMed  Google Scholar 

  40. Xu M, Wu X, Liu Z, Ding Y, Kong W, Little PJ, et al. A novel mouse model of diabetes, atherosclerosis and fatty liver disease using an AAV8-PCSK9-D377Y injection and dietary manipulation in db/db mice. Biochem Biophys Res Commun. 2022;622:163–9.

    Article  CAS  PubMed  Google Scholar 

  41. Takamiya Y, Fukami K, Yamagishi S, Kaida Y, Nakayama Y, Obara N, et al. Experimental diabetic nephropathy is accelerated in matrix metalloproteinase-2 knockout mice. Nephrol Dial Transpl. 2013;28:55–62.

    Article  CAS  Google Scholar 

  42. Wang L, Wang HL, Liu TT, Lan HY. TGF-beta as a master regulator of diabetic nephropathy. Int J Mol Sci 2021;22:7881.

  43. Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci USA. 1993;90:1814–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jandeleit-Dahm K, Watson A, Soro-Paavonen A. The AGE/RAGE axis in diabetes-accelerated atherosclerosis. Clin Exp Pharmacol Physiol. 2008;35:329–34.

    Article  CAS  PubMed  Google Scholar 

  45. Seo SH, Jeong GS. Fisetin inhibits TNF-alpha-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression. Int Immunopharmacol. 2015;29:246–53.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang HF, Zhang HB, Wu XP, Guo YL, Cheng WD, Qian F. Fisetin alleviates sepsis-induced multiple organ dysfunction in mice via inhibiting p38 MAPK/MK2 signaling. Acta Pharmacol Sin. 2020;41:1348–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marechal L, Laviolette M, Rodrigue-Way A, Sow B, Brochu M, Caron V, et al. The CD36-PPARgamma pathway in metabolic disorders. Int J Mol Sci 2018;19:1529.

  48. Yu M, Jiang M, Chen Y, Zhang S, Zhang W, Yang X, et al. Inhibition of macrophage CD36 expression and cellular oxidized low density lipoprotein (oxLDL) accumulation by tamoxifen: a peroxisome proliferator-activated receptor (PPAR)gamma-dependent mechanism. J Biol Chem. 2016;291:16977–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang X, Yao H, Chen Y, Sun L, Li Y, Ma X, et al. Inhibition of glutathione production induces macrophage CD36 expression and enhances cellular-oxidized low density lipoprotein (oxLDL) uptake. J Biol Chem. 2015;290:21788–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) Grants 81973316 to JHH, the Major Special Science and Technology Project of Anhui Province (202003a07020015) to QSL, and the Open Fund of Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation (2021XHY01) to XXY.

Author information

Authors and Affiliations

Authors

Contributions

XXY, TFZ, and ZGL performed study conception and design, and analyzed data. TFZ, ZGL, and PCC conducted the experiments. TFZ, ZGL, PCC, SHZ, WTG, and TXW performed the material preparation and interpretation. TFZ, ZGL, and XXY wrote the manuscript. XXY, YLC, YJD, QSL, CZL, ZLX, and JHH contributed reagents, analysis tools and revised the paper. All authors discussed the data and commented on the manuscript.

Corresponding author

Correspondence to Xiao-xiao Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Tf., Liu, Zg., Cao, Pc. et al. Fisetin treatment alleviates kidney injury in mice with diabetes-exacerbated atherosclerosis through inhibiting CD36/fibrosis pathway. Acta Pharmacol Sin 44, 2065–2074 (2023). https://doi.org/10.1038/s41401-023-01106-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01106-6

Keywords

This article is cited by

Search

Quick links