Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic β-adrenergic stress contributes to cardiomyopathy in rodents with collagen-induced arthritis

Abstract

Patients with rheumatoid arthritis (RA) have a much higher incidence of cardiac dysfunction, which contributes to the high mortality rate of RA despite anti-arthritic drug therapy. In this study, we investigated dynamic changes in cardiac function in classic animal models of RA and examined the potential effectors of RA-induced heart failure (HF). Collagen-induced arthritis (CIA) models were established in rats and mice. The cardiac function of CIA animals was dynamically monitored using echocardiography and haemodynamics. We showed that cardiac diastolic and systolic dysfunction occurred in CIA animals and persisted after joint inflammation and that serum proinflammatory cytokine (IL-1β, TNF-α) levels were decreased. We did not find evidence of atherosclerosis (AS) in arthritic animals even though cardiomyopathy was significant. We observed that an impaired cardiac β1AR-excitation contraction coupling signal was accompanied by sustained increases in blood epinephrine levels in CIA rats. Furthermore, serum epinephrine concentrations were positively correlated with the heart failure biomarker NT-proBNP in RA patients (r2 = +0.53, P < 0.0001). In CIA mice, treatment with the nonselective βAR blocker carvedilol (2.5 mg·kg−1·d−1, for 4 weeks) or the specific GRK2 inhibitor paroxetine (2.5 mg·kg−1·d−1, for 4 weeks) effectively rescued heart function. We conclude that chronic and persistent β-adrenergic stress in CIA animals is a significant contributor to cardiomyopathy, which may be a potential target for protecting RA patients against HF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CIA rats successively develop cardiac diastolic and systolic dysfunction.
Fig. 2: The development of heart dysfunction in CIA rats deviated from the process of joint and systemic inflammation.
Fig. 3: Cardiomyopathy in CIA rats is independent of AS.
Fig. 4: Increased β-adrenergic stress was found to accompany heart function impairment in CIA rats.
Fig. 5: Blocking β1AR activation by carvedilol or inhibiting GRK2 specifically rescued heart function in mice with CIA.
Fig. 6: Carvedilol or paroxetine treatment successfully improved the morphology and adrenergic response of heart from CIA mice.
Fig. 7: Schematic diagram of the mechanism of RA-induced heart failure.

Similar content being viewed by others

References

  1. Su T, Guan Q, Cheng H, Zhu Z, Jiang C, Guo P, et al. Functions of G protein-coupled receptor 56 in health and disease. Acta Physiol (Oxf). 2022;236:e13866.

    Article  CAS  PubMed  Google Scholar 

  2. Sokka T, Abelson B, Pincus T. Mortality in rheumatoid arthritis: 2008 update. Clin Exp Rheumatol. 2008;26:S35–61.

    CAS  PubMed  Google Scholar 

  3. Adlan AM, Lip GY, Paton JF, Kitas GD, Fisher JP. Autonomic function and rheumatoid arthritis: a systematic review. Semin Arthritis Rheum. 2014;44:283–304.

    Article  PubMed  Google Scholar 

  4. Gonzalez-Juanatey C, Testa A, Garcia-Castelo A, Garcia-Porrua C, Llorca J, Ollier WE, et al. Echocardiographic and Doppler findings in long-term treated rheumatoid arthritis patients without clinically evident cardiovascular disease. Semin Arthritis Rheum. 2004;33:231–8.

    Article  PubMed  Google Scholar 

  5. Scanlon EM, Mankad R, Crowson CS, Kullo IJ, Mulvagh SL, Matteson EL, et al. Cardiovascular risk assessment in patients with rheumatoid arthritis: a correlative study of noninvasive arterial health testing. Clin Rheumatol. 2017;36:763–71.

    Article  PubMed  Google Scholar 

  6. Dessein PH, Gonzalez-Gay MA. Management of cardiovascular disease risk in rheumatoid arthritis. J Clin Med. 2022;11:3487.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lai J, Han Y, Huang C, Li B, Ni J, Dong M, et al. Non-invasive skin cholesterol testing: a potential proxy for LDL-C and apoB serum measurements. Lipids Health Dis. 2021;20:137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rezus E, Macovei LA, Burlui AM, Cardoneanu A, Rezus C. Ischemic heart disease and rheumatoid arthritis-two conditions, the same background. Life (Basel). 2021;11:1042.

    CAS  PubMed  Google Scholar 

  9. Leach S, Suzuki K. Adrenergic signaling in circadian control of immunity. Front Immunol. 2020;11:1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin TT, Sung YL, Syu JY, Lin KY, Hsu HJ, Liao MT, et al. Anti-inflammatory and antiarrhythmic effects of beta blocker in a rat model of rheumatoid arthritis. J Am Heart Assoc. 2020;9:e016084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu L, Tai Y, Hu S, Zhang M, Wang R, Zhou W, et al. Bidirectional role of beta2-adrenergic receptor in autoimmune diseases. Front Pharmacol. 2018;9:1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klatt S, Stangl H, Kunath J, Lowin T, Pongratz G, Straub RH. Peripheral elimination of the sympathetic nervous system stimulates immunocyte retention in lymph nodes and ameliorates collagen type II arthritis. Brain Behav Immun. 2016;54:201–10.

    Article  CAS  PubMed  Google Scholar 

  13. Wang H, Chai K, Du M, Wang S, Cai JP, Li Y, et al. Prevalence and incidence of heart failure among urban patients in China: a national population-based analysis. Circ Heart Fail. 2021;14:e008406.

    Article  PubMed  Google Scholar 

  14. Wang Q, Wang Y, West TM, Liu Y, Reddy GR, Barbagallo F, et al. Carvedilol induces biased beta1 adrenergic receptor-nitric oxide synthase 3-cyclic guanylyl monophosphate signalling to promote cardiac contractility. Cardiovasc Res. 2021;117:2237–51.

    Article  CAS  PubMed  Google Scholar 

  15. Sun H, Wang M, Su T, Guo P, Tai Y, Cheng H, et al. Ziyuglycoside I attenuates collagen-induced arthritis through inhibiting plasma cell expansion. J Ethnopharmacol. 2022;294:115348.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou WJ, Wang DD, Tao J, Tai Y, Zhou ZW, Wang Z, et al. Deficiency of beta-arrestin2 exacerbates inflammatory arthritis by facilitating plasma cell formation. Acta Pharmacol Sin. 2021;42:755–66.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Q, Wang L, Wu L, Zhang M, Hu S, Wang R, et al. Paroxetine alleviates T lymphocyte activation and infiltration to joints of collagen-induced arthritis. Sci Rep. 2017;7:45364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang QT, Zhang LL, Wu HX, Wei W. The expression change of beta-arrestins in fibroblast-like synoviocytes from rats with collagen-induced arthritis and the effect of total glucosides of paeony. J Ethnopharmacol. 2011;133:511–6.

    Article  CAS  PubMed  Google Scholar 

  19. Klocke R, Cockcroft JR, Taylor GJ, Hall IR, Blake DR. Arterial stiffness and central blood pressure, as determined by pulse wave analysis, in rheumatoid arthritis. Ann Rheum Dis. 2003;62:414–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu B, Li M, Wang Y, Zhao M, Morotti S, Shi Q, et al. GRK5 controls SAP97-dependent cardiotoxic beta1 adrenergic receptor-CaMKII signaling in heart failure. Circ Res. 2020;127:796–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferrero KM, Koch WJ. GRK2 in cardiovascular disease and its potential as a therapeutic target. J Mol Cell Cardiol. 2022;172:14–23.

    Article  CAS  PubMed  Google Scholar 

  22. Lee J, Olivieri C, Ong C, Masterson LR, Gomes S, Lee BS, et al. Raf kinase inhibitory protein regulates the cAMP-dependent protein kinase signaling pathway through a positive feedback loop. Proc Natl Acad Sci USA. 2022;119:e2121867119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li D, Guo YY, Cen XF, Qiu HL, Chen S, Zeng XF, et al. Lupeol protects against cardiac hypertrophy via TLR4-PI3K-Akt-NF-kappaB pathways. Acta Pharmacol Sin. 2022;43:1989–2002.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Q, Liu Y, Fu Q, Xu B, Zhang Y, Kim S, et al. Inhibiting insulin-mediated beta2-adrenergic receptor activation prevents diabetes-associated cardiac dysfunction. Circulation. 2017;135:73–88.

    Article  CAS  PubMed  Google Scholar 

  25. Park E, Griffin J, Bathon JM. Myocardial dysfunction and heart failure in rheumatoid arthritis. Arthritis Rheumatol. 2022;74:184–99.

    Article  PubMed  Google Scholar 

  26. Park E, Ito K, Iqbal R, Amigues I, Bokhari S, Van Eyk J, et al. Prospective changes in diastolic function in patients with rheumatoid arthritis. Arthritis Res Ther. 2022;24:184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Semb AG, Ikdahl E, Wibetoe G, Crowson C, Rollefstad S. Atherosclerotic cardiovascular disease prevention in rheumatoid arthritis. Nat Rev Rheumatol. 2020;16:361–79.

    Article  PubMed  Google Scholar 

  28. Nikiphorou E, de Lusignan S, Mallen CD, Khavandi K, Bedarida G, Buckley CD, et al. Cardiovascular risk factors and outcomes in early rheumatoid arthritis: a population-based study. Heart. 2020;106:1566–72.

    Article  CAS  PubMed  Google Scholar 

  29. Ritskes-Hoitinga J, Beynen AC. Atherosclerosis in the rat. Artery. 1988;16:25–50.

    CAS  PubMed  Google Scholar 

  30. Heriansyah T, Dimiati H, Hadi TF, Umara DA, Riandi LV, Fajri F, et al. Ascorbic acid vs calcitriol in influencing monocyte chemoattractant protein-1, nitric oxide, superoxide dismutase, as markers of endothelial dysfunction: in vivo study in atherosclerosis rat model. Vasc Health Risk Manag. 2023;19:139–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou Q, Han X, Li R, Zhao W, Bai B, Yan C, et al. Anti-atherosclerosis of oligomeric proanthocyanidins from Rhodiola rosea on rat model via hypolipemic, antioxidant, anti-inflammatory activities together with regulation of endothelial function. Phytomedicine. 2018;51:171–80.

    Article  CAS  PubMed  Google Scholar 

  32. Bes C, Gurel S, Bugdayci G, Dikbas O, Soy M. Atherosclerosis assessment and rheumatoid arthritis. Z Rheumatol. 2018;77:330–4.

    Article  CAS  PubMed  Google Scholar 

  33. Reiss AB, Silverman A, Khalfan M, Vernice NA, Kasselman LJ, Carsons SE, et al. Accelerated atherosclerosis in rheumatoid arthritis: mechanisms and treatment. Curr Pharm Des. 2019;25:969–86.

    Article  CAS  PubMed  Google Scholar 

  34. Da Silva JA, Jacobs JW, Kirwan JR, Boers M, Saag KG, Ines LB, et al. Safety of low dose glucocorticoid treatment in rheumatoid arthritis: published evidence and prospective trial data. Ann Rheum Dis. 2006;65:285–93.

    Article  PubMed  Google Scholar 

  35. Baniaamam M, Paulus WJ, Blanken AB, Nurmohamed MT. The effect of biological DMARDs on the risk of congestive heart failure in rheumatoid arthritis: a systematic review. Expert Opin Biol Ther. 2018;18:585–94.

    Article  CAS  PubMed  Google Scholar 

  36. Danila MI, Patkar NM, Curtis JR, Saag KG, Teng GG. Biologics and heart failure in rheumatoid arthritis: are we any wiser? Curr Opin Rheumatol. 2008;20:327–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johnson TM, Sayles HR, Baker JF, George MD, Roul P, Zheng C, et al. Investigating changes in disease activity as a mediator of cardiovascular risk reduction with methotrexate use in rheumatoid arthritis. Ann Rheum Dis. 2021;80:1385–92.

    Article  CAS  PubMed  Google Scholar 

  38. Veldhuijzen van Zanten JJ, Ring C, Carroll D, Kitas GD. Increased C reactive protein in response to acute stress in patients with rheumatoid arthritis. Ann Rheum Dis. 2005;64:1299–304.

    Article  CAS  PubMed  Google Scholar 

  39. Chen J, Norling LV, Mesa JG, Silva MP, Burton SE, Reutelingsperger C, et al. Annexin A1 attenuates cardiac diastolic dysfunction in mice with inflammatory arthritis. Proc Natl Acad Sci USA. 2021;118:e2020385118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ahmed YM, Messiha BA, Abo-Saif AA. Granisetron and carvedilol can protect experimental rats againstadjuvant-induced arthritis. Immunopharmacol Immunotoxicol. 2017;39:97–104.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (81973314, 81202541, and 81973332); the Anhui Provincial Natural Science Foundation for Distinguished Young Scholars (1808085J28); Collaborative Innovation Project of Key Scientific Research Platform in Anhui Universities (GXXT-2020-066); Anhui Provincial Key R&D Programs (2022e07020042); Program for Upgrading Scientific Research Level of Anhui Medical University (2019xkjT008); and Academic Funding for Top-notch Talents in University Disciplines (Majors) of Anhui Province (gxbjZD2021047).

Author information

Authors and Affiliations

Authors

Contributions

ZDZ, MZ, ZW, YSH, and QTW conceptualised the project and design of the research; ZDZ, MZ, ZW, CJH, CRJ, HJC, QYG, TTS, MMW, and HFW performed the experiments; YG performed the pathological analysis. YSH collected biological samples and clinical data. ZDZ, MZ, ZW, and QTW analysed the data; ZDZ and QTW wrote the original paper; ZDZ, HFW, WW, YSH, and QTW reviewed and edited the paper. All authors approved the final version of the paper.

Corresponding authors

Correspondence to Yong-sheng Han or Qing-tong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Zd., Zhang, M., Wang, Z. et al. Chronic β-adrenergic stress contributes to cardiomyopathy in rodents with collagen-induced arthritis. Acta Pharmacol Sin 44, 1989–2003 (2023). https://doi.org/10.1038/s41401-023-01099-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01099-2

Keywords

This article is cited by

Search

Quick links