Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viral infections in pregnancy and impact on offspring neurodevelopment: mechanisms and lessons learned

Abstract

Pregnant individuals with viral illness may experience significant morbidity and have higher rates of pregnancy and neonatal complications. With the growing number of viral infections and new viral pandemics, it is important to examine the effects of infection during pregnancy on both the gestational parent and the offspring. Febrile illness and inflammation during pregnancy are correlated with risk for autism, attention deficit/hyperactivity disorder, and developmental delay in the offspring in human and animal models. Historical viral epidemics had limited follow-up of the offspring of affected pregnancies. Infants exposed to seasonal influenza and the 2009 H1N1 influenza virus experienced increased risks of congenital malformations and neuropsychiatric conditions. Zika virus exposure in utero can lead to a spectrum of abnormalities, ranging from severe microcephaly to neurodevelopmental delays which may appear later in childhood and in the absence of Zika-related birth defects. Vertical infection with severe acute respiratory syndrome coronavirus-2 has occurred rarely, but there appears to be a risk for developmental delays in the infants with antenatal exposure. Determining how illness from infection during pregnancy and specific viral pathogens can affect pregnancy and neurodevelopmental outcomes of offspring can better prepare the community to care for these children as they grow.

Impact

  • Viral infections have impacted pregnant people and their offspring throughout history.

  • Antenatal exposure to maternal fever and inflammation may increase risk of developmental and neurobehavioral disorders in infants and children.

  • The recent SARS-CoV-2 pandemic stresses the importance of longitudinal studies to follow pregnancies and offspring neurodevelopment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Viral exposures in pregnancy impact offspring neurodevelopment.

Similar content being viewed by others

References

  1. Liu, H. et al. Why are pregnant women susceptible to COVID-19? An immunological viewpoint. J. Reprod. Immunol. 139, 103122 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mor, G., Aldo, P. & Alvero, A. B. The unique immunological and microbial aspects of pregnancy. Nat. Rev. Immunol. 17, 469–482 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Jamieson, D. J., Theiler, R. N. & Rasmussen, S. A. Emerging infections and pregnancy. Emerg. Infect. 12, 1638–1643 (2006).

    Article  Google Scholar 

  4. Fortin, O. & Mulkey, S. B. Neurodevelopmental outcomes in congenital and perinatal infections. Curr. Opin. Infect. Dis. 36, 405–413 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Shuid, A. N. et al. Association between viral infections and risk of autistic disorder: an overview. Int. J. Environ. Res. Public. Health 18, 2817 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hosier, H. et al. SARS-CoV-2 infection of the placenta. J. Clin. Invest. 130, 4947–4953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dong, L. et al. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. JAMA 323, 1846–1848 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pulinx, B. et al. Vertical transmission of SARS-CoV-2 infection and preterm birth. Eur. J. Clin. Microbiol. Infect. Dis. 39, 2441–2445 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeng, H. et al. Antibodies in infants born to mothers with COVID-19 pneumonia. JAMA 323, 1848–1849 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zaigham, M. et al. Clinical-pathological features in placentas of pregnancies with SARS-CoV-2 infection and adverse outcome: case series with and without congenital transmission. BJOG Int. J. Obstet. Gynaecol. 129, 1361–1374 (2022).

    Article  CAS  Google Scholar 

  11. Atladóttir, H. Ó. et al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J. Autism Dev. Disord. 40, 1423–1430 (2010).

    Article  PubMed  Google Scholar 

  12. Atladóttir, H. Ó., Henriksen, T. B., Schendel, D. E. & Parner, E. T. Autism after infection, febrile episodes, and antibiotic use during pregnancy: an exploratory study. Pediatrics 130, e1447–e1454 (2012).

    Article  PubMed  Google Scholar 

  13. Bohmwald, K., Andrade, C. A. & Kalergis, A. M. Contribution of pro-inflammatory molecules induced by respiratory virus infections to neurological disorders. Pharmaceuticals 14, 340 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zimmer, A., Youngblood, A., Adnane, A., Miller, B. J. & Goldsmith, D. R. Prenatal exposure to viral infection and neuropsychiatric disorders in offspring: a review of the literature and recommendations for the COVID-19 pandemic. Brain. Behav. Immun. 91, 756–770 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Zerbo, O. et al. Maternal infection during pregnancy and autism spectrum disorders. J. Autism Dev. Disord. 45, 4015–4025 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shi, L., Tu, N. & Patterson, P. H. Maternal influenza infection is likely to alter fetal brain development indirectly: the virus is not detected in the fetus. Int. J. Dev. Neurosci. 23, 299–305 (2005).

    Article  PubMed  Google Scholar 

  17. Patterson, P. H. Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav. Brain Res. 204, 313–321 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Mednick, S. A., Machon, R. A., Huttunen, M. O. & Bonett, D. Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch. Gen. Psychiatry 45, 189–192 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Brown, A. S. et al. Serologic evidence for prenatal influenza in the etiology of schizophrenia. Abstr. IXth Int. Congr. Schizophr. Res. 60, 34 (2003).

    Article  Google Scholar 

  20. Edwards, M. J., Saunders, R. D. & Shiota, K. Effects of heat on embryos and foetuses. Int. J. Hyperth. 19, 295–324 (2003).

    Article  CAS  Google Scholar 

  21. Dreier, J. W., Andersen, A.-M. N. & Berg-Beckhoff, G. Systematic review and meta-analyses: fever in pregnancy and health impacts in the offspring. Pediatrics 133, e674–e688 (2014).

    Article  PubMed  Google Scholar 

  22. Zerbo, O. et al. Is maternal influenza or fever during pregnancy associated with autism or developmental delays? results from the CHARGE (CHildhood Autism Risks from Genetics and Environment) study. J. Autism Dev. Disord. 43, 25–33 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Croen, L. A. et al. Infection and fever in pregnancy and autism spectrum disorders: findings from the study to explore early development. Autism Res. 12, 1551–1561 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. Holst, C., Jørgensen, S. E., Wohlfahrt, J., Nybo Andersen, A.-M. & Melbye, M. Fever during pregnancy and motor development in children: a study within the Danish National Birth Cohort. Dev. Med. Child Neurol. 57, 725–732 (2015).

    Article  PubMed  Google Scholar 

  25. Currenti, S. A. Understanding and determining the etiology of autism. Cell. Mol. Neurobiol. 30, 161–171 (2010).

    Article  PubMed  Google Scholar 

  26. Hornig, M. et al. Prenatal fever and autism risk. Mol. Psychiatry 23, 759–766 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Ács, N., Bánhidy, F., Puhó, E. & Czeizel, A. E. Maternal influenza during pregnancy and risk of congenital abnormalities in offspring. Birth Defects Res. A. Clin. Mol. Teratol. 73, 989–996 (2005).

    Article  PubMed  Google Scholar 

  28. Martin, R. P. & Dombrowski, S. C. Prenatal Exposures: Psychological and Educational Consequences for Children. xiii, 284 (Springer Science + Business Media, New York, NY, US, 2008).

  29. Graham, J. M. Jr., Edwards, M. J. & Edwards, M. J. Teratogen update: gestational effects of maternal hyperthermia due to febrile illnesses and resultant patterns of defects in humans. Teratology 58, 209–221 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Fang, S.-Y., Wang, S., Huang, N., Yeh, H.-H. & Chen, C.-Y. Prenatal infection and autism spectrum disorders in childhood: a population-based case-control study in Taiwan. Paediatr. Perinat. Epidemiol. 29, 307–316 (2015).

    Article  PubMed  Google Scholar 

  31. Patterson, P. H. Maternal infection and immune involvement in autism. Trends Mol. Med. 17, 389–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abdallah, M. W. et al. Amniotic fluid inflammatory cytokines: potential markers of immunologic dysfunction in autism spectrum disorders. World J. Biol. Psychiatry 14, 528–538 (2013).

    Article  PubMed  Google Scholar 

  33. Goines, P. E. et al. Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: a case-control study. Mol. Autism 2, 13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gustavson, K. et al. Maternal fever during pregnancy and offspring attention deficit hyperactivity disorder. Sci. Rep. 9, 9519 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  35. Werenberg Dreier, J. et al. Fever and infections in pregnancy and risk of attention deficit/hyperactivity disorder in the offspring. J. Child Psychol. Psychiatry 57, 540–548 (2016).

    Article  PubMed  Google Scholar 

  36. Dreier, J. W., Berg-Beckhoff, G., Andersen, P. K. & Andersen, A.-M. N. Prenatal exposure to fever and infections and academic performance: a multilevel analysis. Am. J. Epidemiol. 186, 29–37 (2017).

    Article  PubMed  Google Scholar 

  37. Collier, S. A., Rasmussen, S. A., Feldkamp, M. L. & Honein, M. A. Prevalence of self-reported infection during pregnancy among control mothers in the National Birth Defects Prevention Study. Birth Defects Res. A. Clin. Mol. Teratol. 66, 193–201 (2009).

    Article  Google Scholar 

  38. Cordeiro, C. N., Tsimis, M. & Burd, I. Infections and brain development. Obstet. Gynecol. Surv. 70, 644–655 (2015).

  39. Estes, M. L. & McAllister, A. K. Maternal TH17 cells take a toll on baby’s brain. Science 351, 919–920 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Deverman, B. E. & Patterson, P. H. Cytokines and CNS development. Neuron 64, 61–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Meyer, U. et al. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J. Neurosci. 26, 4752–4762 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meyer, U., Yee, B. K. & Feldon, J. The neurodevelopmental impact of prenatal infections at different times of pregnancy: the earlier the worse? Neuroscientist 13, 241–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Jones, K. L. et al. Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Mol. Psychiatry 22, 273–279 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Dozmorov, M. G. et al. Associations between maternal cytokine levels during gestation and measures of child cognitive abilities and executive functioning. Brain. Behav. Immun. 70, 390–397 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gabay, C. & Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340, 448–454 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Brown, A. S. et al. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol. Psychiatry 19, 259–264 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Wong, S. F., Chow, K. M. & de Swiet, M. Severe acute respiratory syndrome and pregnancy. BJOG Int. J. Obstet. Gynaecol. 110, 641–642 (2003).

    Article  CAS  Google Scholar 

  48. Wong, S. F. et al. Pregnancy and perinatal outcomes of women with severe acute respiratory syndrome. Am. J. Obstet. Gynecol. 191, 292–297 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lam, C. M. et al. A case-controlled study comparing clinical course and outcomes of pregnant and non-pregnant women with severe acute respiratory syndrome. BJOG Int. J. Obstet. Gynaecol. 111, 771–774 (2004).

    Article  Google Scholar 

  50. Ng, P. C., Leung, C. W., Chiu, W. K., Wong, S. F. & Hon, E. K. L. SARS in newborns and children. Biol. Neonate 85, 293–298 (2004).

    Article  PubMed  Google Scholar 

  51. Li, A. M. & Ng, P. C. Severe acute respiratory syndrome (SARS) in neonates and children. Arch. Dis. Child. Fetal Neonatal Ed. 90, F461 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Di Mascio, D. et al. Outcome of coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM 2, 100107 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alfaraj, S. H., Al-Tawfiq, J. A. & Memish, Z. A. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection during pregnancy: Report of two cases & review of the literature. J. Microbiol. Immunol. Infect. 52, 501–503 (2019).

    Article  PubMed  Google Scholar 

  54. Silasi, M. et al. Viral infections during pregnancy. Am. J. Reprod. Immunol. 73, 199–213 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kwon, J.-Y., Romero, R. & Mor, G. New Insights into the relationship between viral infection and pregnancy complications. Am. J. Reprod. Immunol. 71, 387–390 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kourtis, A. P., Read, J. S. & Jamieson, D. J. Pregnancy and infection. N. Engl. J. Med. 370, 2211–2218 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Neuzil, K. M., Reed, G. W., Mitchel, E. F., Simonsen, L. & Griffin, M. R. Impact of influenza on acute cardiopulmonary hospitalizations in pregnant women. Am. J. Epidemiol. 148, 1094–1102 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Jamieson, D. J. et al. H1N1 2009 influenza virus infection during pregnancy in the USA. Lancet 374, 451–458 (2009).

    Article  PubMed  Google Scholar 

  59. Harris, J. W. Influenza occurring in pregnant women: a statistical study of thirteen hundred and fifty cases. J. Am. Med. Assoc. 72, 978–980 (1919).

    Article  Google Scholar 

  60. Nuzum, J. W., Pilot, I., Stangl, F. H. & Bonar, B. E. Pandemic influenza and pneumonia in a large civil hospital. J. Am. Med. Assoc. 71, 1562–1565 (1918).

    Article  Google Scholar 

  61. Freeman, D. W. & Barno, A. Deaths from Asian influenza associated with pregnancy. Am. J. Obstet. Gynecol. 78, 1172–1175 (1959).

    Article  CAS  PubMed  Google Scholar 

  62. Louie, J. K., Acosta, M., Jamieson, D. J., Honein, M. A. & Group, C. P. (H1N1) W. severe 2009 H1N1 influenza in pregnant and postpartum women in California. N. Engl. J. Med. 362, 27–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Mosby, L. G., Rasmussen, S. A. & Jamieson, D. J. 2009 pandemic influenza A (H1N1) in pregnancy: a systematic review of the literature. Am. J. Obstet. Gynecol. 205, 10–18 (2011).

    Article  PubMed  Google Scholar 

  64. Pierce, M., Kurinczuk, J. J., Spark, P., Brocklehurst, P. & Knight, M. Perinatal outcomes after maternal 2009/H1N1 infection: national cohort study. BMJ 342, d3214 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Borren, I. et al. Early prenatal exposure to pandemic influenza A (H1N1) infection and child psychomotor development at 6 months—A population-based cohort study. Early Hum. Dev. 122, 1–7 (2018).

    Article  PubMed  Google Scholar 

  66. Rasmussen, S. A., Jamieson, D. J. & Uyeki, T. M. Effects of influenza on pregnant women and infants. Am. J. Obstet. Gynecol. 207, S3–S8 (2012).

    Article  PubMed  Google Scholar 

  67. Deykin, E. Y. & Macmahon, B. Viral exposure and autism. Am. J. Epidemiol. 109, 628–638 (1979).

    Article  CAS  PubMed  Google Scholar 

  68. Zerbo, O. et al. Association between influenza infection and vaccination during pregnancy and risk of autism spectrum disorder. JAMA Pediatr. 171, e163609–e163609 (2017).

    Article  PubMed  Google Scholar 

  69. Dassa, D., Takei, N., Sham, P. C. & Murray, R. M. No association between prenatal exposure to influenza and autism. Acta Psychiatr. Scand. 92, 145–149 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Mueller, F. S. et al. Influence of poly(I:C) variability on thermoregulation, immune responses and pregnancy outcomes in mouse models of maternal immune activation. Brain. Behav. Immun. 80, 406–418 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Malkova, N. V., Yu, C. Z., Hsiao, E. Y., Moore, M. J. & Patterson, P. H. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain. Behav. Immun. 26, 607–616 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shi, L., Fatemi, S. H., Sidwell, R. W. & Patterson, P. H. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J. Neurosci. 23, 297 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Dunaevsky, A. & Bergdolt, L. Brain changes in a maternal Immune activation model of neurodevelopmental brain disorders. Prog. Neurobiol. 175, 1–19 (2019).

    Article  PubMed  Google Scholar 

  74. Smith, S. E. P., Li, J., Garbett, K., Mirnics, K. & Patterson, P. H. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 27, 10695 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rasmussen, J. M. et al. Maternal Interleukin-6 concentration during pregnancy is associated with variation in frontolimbic white matter and cognitive development in early life. NeuroImage 185, 825–835 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Ozaki, K. et al. Maternal immune activation induces sustained changes in fetal microglia motility. Sci. Rep. 10, 21378 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Machado, C. J., Whitaker, A. M., Smith, S. E. P., Patterson, P. H. & Bauman, M. D. Maternal immune activation in nonhuman primates alters social attention in juvenile offspring. Biol. Psychiatry 77, 823–832 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Fatemi, S. H. et al. Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophrenia. Cell. Mol. Neurobiol. 22, 25–33 (2002).

    Article  PubMed  Google Scholar 

  80. Short, S. J. et al. Maternal influenza infection during pregnancy impacts postnatal brain development in the rhesus monkey. Biol. Psychiatry 67, 965–973 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Corradini, I. et al. Maternal immune activation delays excitatory-to-inhibitory gamma-aminobutyric acid switch in offspring. Biol. Psychiatry 83, 680–691 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Basil, P. et al. Prenatal maternal immune activation causes epigenetic differences in adolescent mouse brain. Transl. Psychiatry 4, e434–e434 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Richetto, J. et al. Genome-wide DNA methylation changes in a mouse model of infection-mediated neurodevelopmental disorders. Genet. Epigenetic Risks Autism Spectr. Disord. 81, 265–276 (2017).

    CAS  Google Scholar 

  84. Shrestha, S. & Offer, S. M. Epigenetic regulations of GABAergic neurotransmission: relevance for neurological disorders and epigenetic therapy. Med. Epigenetics 4, 1–19 (2016).

    Article  CAS  Google Scholar 

  85. Hill, R. A. et al. Maternal SARS-CoV-2 exposure alters infant DNA methylation. Brain Behav. Immun. - Health 27, 100572 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fujita, Y., Ishima, T. & Hashimoto, K. Supplementation with D-serine prevents the onset of cognitive deficits in adult offspring after maternal immune activation. Sci. Rep. 6, 37261 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, J., Jing, Y., Zhang, H., Bilkey, D. K. & Liu, P. Maternal immune activation altered microglial immunoreactivity in the brain of postnatal day 2 rat offspring. Synapse 73, e22072 (2019).

    Article  Google Scholar 

  88. Scher, M. S. “The first thousand days” define a fetal/neonatal neurology program. Front. Pediatr. 9, 683138 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Huntley, M. A. et al. Genome-wide analysis of differential gene expression and splicing in excitatory neurons and interneuron subtypes. J. Neurosci. 40, 958–973 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Katsarou, A., Moshé, S. L. & Galanopoulou, A. S. Interneuronopathies and their role in early life epilepsies and neurodevelopmental disorders. Epilepsia Open 2, 284–306 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Molnár, Z. et al. New insights into the development of the human cerebral cortex. J. Anat. 235, 432–451 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  92. Para, R. et al. The distinct immune nature of the fetal inflammatory response syndrome type I and type II. ImmunoHorizons 5, 735–751 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Jung, E. et al. The fetal inflammatory response syndrome: the origins of a concept, pathophysiology, diagnosis, and obstetrical implications. Semin. Fetal Neonatal Med. 25, 101146 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kim, C. J. et al. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am. J. Obstet. Gynecol. 213, S29–S52 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lee, J. et al. Characterization of the fetal blood transcriptome and proteome in maternal anti‐fetal rejection: evidence of a distinct and novel type of human fetal systemic inflammatory response. Am. J. Reprod. Immunol. 70, 265–284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. COVID Data Tracker. Centers for Disease Control and Prevention https://covid.cdc.gov/covid-data-tracker (2020).

  97. Rasmussen, S. A. et al. Pandemic influenza and pregnant women: summary of a meeting of experts. Am. J. Public Health 99, S248–S254 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Narang, K. et al. SARS-CoV-2 infection and COVID-19 during pregnancy: a multidisciplinary review. Mayo Clin. Proc. 95, 1750–1765 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Villar, J. et al. Maternal and neonatal morbidity and mortality among pregnant women with and without COVID-19 infection: the INTERCOVID multinational cohort study. JAMA Pediatr. 175, 817–826 (2021).

    Article  PubMed  Google Scholar 

  100. Kumar, R. et al. SARS-CoV-2 infection during pregnancy and pregnancy-related conditions: concerns, challenges, management and mitigation strategies–a narrative review. J. Infect. Public Health 14, 863–875 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zambrano, L. D. et al. Morbidity and mortality weekly report update: characteristics of symptomatic women of reproductive age with laboratory-confirmed SARS-CoV-2 infection by pregnancy status. Cent. Dis. Control MMWR Morb. Mortal. Wkly. Rep. 69, 1641–1647 (2020).

    Article  CAS  Google Scholar 

  102. Allotey, J. et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ 370, m3320 (2020).

    Article  PubMed  Google Scholar 

  103. Ellington, S. et al. Characteristics of women of reproductive age with laboratory-confirmed SARS-CoV-2 infection by pregnancy status—United States, January 22–June 7, 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 769–775 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Piekos, S. N. et al. The effect of maternal SARS-CoV-2 infection timing on birth outcomes: a retrospective multicentre cohort study. Lancet Digit. Health 4, e95–e104 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Khalil, A. et al. SARS-CoV-2 infection in pregnancy: a systematic review and meta-analysis of clinical features and pregnancy outcomes. EClinicalMedicine 25, 100446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Schwartz, D. A., Mulkey, S. B. & Roberts, D. J. SARS-CoV-2 placentitis, stillbirth, and maternal COVID-19 vaccination: clinical–pathologic correlations. Am. J. Obstet. Gynecol. 228, 261–269 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Strid, P. et al. Coronavirus disease 2019 (COVID-19) Severity Among Women of Reproductive Age With Symptomatic Laboratory-Confirmed Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection by Pregnancy Status—United States, 1 January 2020–25 December 2021. Clin. Infect. Dis. 75, S317–S325 (2022).

    Article  PubMed  Google Scholar 

  108. Iuliano, A. D. et al. Trends in disease severity and health care utilization during the early omicron variant period compared with previous SARS-CoV-2 high transmission periods—United States, December 2020-January 2022. Cent. Dis. Control MMWR Morb. Mortal. Wkly. Rep. 71, 146–152 (2022).

    Article  CAS  Google Scholar 

  109. Stock, S. J. et al. SARS-CoV-2 infection and COVID-19 vaccination rates in pregnant women in Scotland. Nat. Med. 28, 504–512 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Adhikari, E. H. et al. COVID-19 cases and disease severity in pregnancy and neonatal positivity associated with delta (B.1.617.2) and omicron (B.1.1.529) variant predominance. JAMA 327, 1500–1502 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Reyes-Lagos, J. J. et al. A translational perspective of maternal immune activation by SARS-CoV-2 on the potential prenatal origin of neurodevelopmental disorders: the role of the cholinergic anti-inflammatory pathway. Front. Psychol. 12, 614451 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Dubey, H., Sharma, R. K., Krishnan, S. & Knickmeyer, R. SARS-CoV-2 (COVID-19) as a possible risk factor for neurodevelopmental disorders. Front. Neurosci. 16, 1021721 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Granja, M. G. et al. SARS-CoV-2 infection in pregnant women: neuroimmune-endocrine changes at the maternal-fetal interface. Neuroimmunomodulation 28, 1–21 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Engert, V. et al. Severe brain damage in a moderate preterm infant as complication of post-COVID-19 response during pregnancy. Neonatology 118, 505–508 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Mulkey, S. B. et al. Neurodevelopment in infants with antenatal or early neonatal exposure to SARS-CoV-2. Early Hum. Dev. 175, 105694 (2022).

    Article  PubMed  Google Scholar 

  116. Edlow, A. G., Castro, V. M., Shook, L. L., Kaimal, A. J. & Perlis, R. H. Neurodevelopmental outcomes at 1 year in infants of mothers who tested positive for SARS-CoV-2 during pregnancy. JAMA Netw. Open 5, e2215787–e2215787 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hessami, K. et al. COVID-19 pandemic and infant neurodevelopmental impairment: a systematic review and meta-analysis. JAMA Netw. Open 5, e2238941–e2238941 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Shuffrey, L. C. et al. Association of birth during the COVID-19 pandemic with neurodevelopmental status at 6 months in infants with and without in utero exposure to maternal SARS-CoV-2 infection. JAMA Pediatr. 176, e215563–e215563 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ayed, M. et al. Neurodevelopmental outcomes of infants born to mothers with SARS-CoV-2 infections during pregnancy: a national prospective study in Kuwait. BMC Pediatr. 22, 319 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lavallée, A. & Dumitriu, D. Low risk of neurodevelopmental impairment in the COVID-19 generation should not make researchers complacent. JAMA Netw. Open 5, e2238958–e2238958 (2022).

    Article  PubMed  Google Scholar 

  121. Firestein, M. R., Dumitriu, D., Marsh, R. & Monk, C. Maternal mental health and infant development during the COVID-19 pandemic. JAMA Psychiatry 79, 1040–1045 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mulkey, S. B. Lessons learned in caring for newborns from one viral outbreak to the next. Pediatr. Res. 95, 416–417 (2023).

    Article  PubMed  Google Scholar 

  123. Celik, I. H., Ozkaya Parlakay, A. & Canpolat, F. E. Management of neonates with maternal prenatal coronavirus infection and influencing factors. Pediatr. Res. https://doi.org/10.1038/s41390-023-02855-0 (2023).

  124. Lu, Y.-C. et al. Maternal psychological distress during the COVID-19 pandemic and structural changes of the human fetal brain. Commun. Med. 2, 47 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Halai, U.-A. et al. Maternal Zika virus disease severity, virus load, prior dengue antibodies, and their relationship to birth outcomes. Clin. Infect. Dis. 65, 877–883 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Honein, M. A. et al. Birth defects among fetuses and infants of US women with evidence of possible Zika virus infection during pregnancy. JAMA 317, 59–68 (2017).

    Article  PubMed  Google Scholar 

  127. Muller, W. J. & Mulkey, S. B. Lessons about early neurodevelopment in children exposed to ZIKV in utero. Nat. Med. 25, 1192–1193 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Moore, C. A. et al. Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr. 171, 288–295 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. França, G. V. A. et al. Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation. Lancet 388, 891–897 (2016).

    Article  PubMed  Google Scholar 

  130. Adebanjo, T. et al. Update: interim guidance for the diagnosis, evaluation, and management of infants with possible congenital Zika virus syndrome—United States, October 2017. Cent. Dis. Control MMWR Morb. Mortal. Wkly. Rep. 66, 1089–1099 (2017).

    Article  Google Scholar 

  131. Mulkey, S. B. et al. Neurodevelopmental abnormalities in children with in utero Zika virus exposure without congenital Zika syndrome. JAMA Pediatr. 174, 269–276 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Marbán-Castro, E. et al. Zika virus infection in pregnant travellers and impact on childhood neurodevelopment in the first two years of life: A prospective observational study. Travel Med. Infect. Dis. 40, 101985 (2021).

    Article  PubMed  Google Scholar 

  133. Grant, R. et al. In utero Zika virus exposure and neurodevelopment at 24 months in toddlers normocephalic at birth: a cohort study. BMC Med. 19, 12 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Rice, M. E. et al. Vital signs: Zika-associated birth defects and neurodevelopmental abnormalities possibly associated with congenital Zika virus infection—U.S. Territories and freely associated states, 2018. Cent. Dis. Control MMWR Morb. Mortal. Wkly. Rep. 67, 858–867 (2018).

    Google Scholar 

  135. Hoen, B. et al. Pregnancy outcomes after ZIKV infection in French territories in the Americas. N. Engl. J. Med. 378, 985–994 (2018).

    Article  PubMed  Google Scholar 

  136. Nielsen-Saines, K. et al. Delayed childhood neurodevelopment and neurosensory alterations in the second year of life in a prospective cohort of ZIKV-exposed children. Nat. Med. 25, 1213–1217 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wild, C. P. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 14, 1847–1850 (2005).

    Article  CAS  Google Scholar 

  138. Tamiz, A. P., Koroshetz, W. J., Dhruv, N. T. & Jett, D. A. A focus on the neural exposome. Neuron 110, 1286–1289 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Scher, M. S. The neural exposome influences the preterm fetal-to-neonatal connectome. Pediatr. Res. 95, 9–11 (2023).

    Article  PubMed  Google Scholar 

  140. Scher, M. S. Fetal neurology: principles and practice with a life-course perspective. in Handbook of Clinical Neurology (eds. de Vries, L. S. & Glass, H. C.) vol. 162 1–29 (Elsevier, 2019).

Download references

Funding

Sarah B. Mulkey receives research support from the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health (grant number R01HD102445 [PI: S.B.M.] and R01HD107140 [Co-I: S.B.M.]) for studies on Zika virus and SARS-CoV-2, respectively. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Emma F. Yates—Performed the literature review, received mentorship from Sarah B. Mulkey in writing a review manuscript, wrote initial draft of the manuscript, edited the manuscript with feedback from her mentor, edited the format of the manuscript for Pediatric Research, designed the figure for the manuscript, reviewed and approved the final version of the manuscript. Sarah B. Mulkey—Received study funding in viral exposures in pregnancy and child outcomes, developed the concept for the review manuscript, mentored Emma F. Yates in performing a literature review, provided critical review of the manuscript draft and edited drafts and revised versions, edited the figure, reviewed and approved the final version of the manuscript. Submitted the final version of the manuscript to Pediatric Research.

Corresponding author

Correspondence to Sarah B. Mulkey.

Ethics declarations

Competing interests

Sarah B. Mulkey receives grant funding from the National Institutes of Health as described in funding. Sarah B. Mulkey and Emma F. Yates do not have conflicts of interest to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yates, E.F., Mulkey, S.B. Viral infections in pregnancy and impact on offspring neurodevelopment: mechanisms and lessons learned. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03145-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03145-z

Search

Quick links