Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Perinatal inflammation, fetal growth restriction, and long-term neurodevelopmental impairment in Bangladesh

Abstract

Background

There are limited data on the impact of perinatal inflammation on child neurodevelopment in low-middle income countries and among growth-restricted infants.

Methods

Population-based, prospective birth cohort study of 288 infants from July 2016–March 2017 in Sylhet, Bangladesh. Umbilical cord blood was analyzed for interleukin(IL)-1α, IL-1β, IL-6, IL-8, and C-reactive protein(CRP). Child neurodevelopment was assessed at 24 months with Bayley-III Scales of Infant Development. We determined associations between cord blood inflammation and neurodevelopmental outcomes, controlling for potential confounders.

Results

248/288 (86%) live born infants were followed until 24 months, among whom 8.9% were preterm and 45.0% small-for-gestational-age(SGA) at birth. Among all infants, elevated concentrations (>75%) of CRP and IL-6 at birth were associated with increased odds of fine motor delay at 24 months; elevated CRP was also associated with lower receptive communication z-scores. Among SGA infants, elevated IL-1α was associated with cognitive delay, IL-8 with language delay, CRP with lower receptive communication z-scores, and IL-1β with lower expressive communication and motor z-scores.

Conclusions

In rural Bangladesh, perinatal inflammation was associated with impaired neurodevelopment at 24 months. The associations were strongest among SGA infants and noted across several biomarkers and domains, supporting the neurobiological role of inflammation in adverse fetal development, particularly in the setting of fetal growth restriction.

Impact

  • Cord blood inflammation was associated with fine motor and language delays at 24 months of age in a community-based cohort in rural Bangladesh.

  • 23.4 million infants are born small-for-gestational-age (SGA) globally each year. Among SGA infants, the associations between cord blood inflammation and adverse outcomes were strong and consistent across several biomarkers and neurodevelopmental domains (cognitive, motor, language), supporting the neurobiological impact of inflammation prominent in growth-restricted infants.

  • Prenatal interventions to prevent intrauterine growth restriction are needed in low- and middle-income countries and may also result in long-term benefits on child development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual diagram.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development (A/RES/70/1).; 2015. Accessed August 2, 2023. https://www.refworld.org/docid/57b6e3e44.html.

  2. Blencowe, H. et al. Preterm birth-associated neurodevelopmental impairment estimates at regional and global levels for 2010. Pediatr. Res. 74, 17–34 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee, A. C. C. et al. Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr. Res. 74, 50–72 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lawn, J. E. et al. Small babies, big risks: global estimates of prevalence and mortality for vulnerable newborns to accelerate change and improve counting. Lancet 401, 1707–1719 (2023).

    Article  PubMed  Google Scholar 

  5. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).

    Article  Google Scholar 

  6. Chico, R. M. et al. Prevalence of malaria and sexually transmitted and reproductive tract infections in pregnancy in sub-Saharan Africa: a systematic review. JAMA 307, 2079–2086 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Collier, S. A., Rasmussen, S. A., Feldkamp, M. L. & Honein, M. A. National Birth Defects Prevention Study. Prevalence of self-reported infection during pregnancy among control mothers in the National Birth Defects Prevention Study. Birth Defects Res. Part A Clin. Mol. Teratol. 85, 193–201 (2009).

    Article  CAS  Google Scholar 

  8. Darmstadt, G. L. et al. 60 Million non-facility births: who can deliver in community settings to reduce intrapartum-related deaths? Int. J. Gynaecol. Obstet. 107, S89–S112 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lawn, J. E. et al. Two million intrapartum-related stillbirths and neonatal deaths: where, why, and what can be done? Int. J. Gynaecol. Obstet. 107, S5–S18 (2009). S19.

    Article  PubMed  Google Scholar 

  10. Black, R. E. et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382, 427–451 (2013).

    Article  PubMed  Google Scholar 

  11. Kozuki, N. et al. Short Maternal Stature Increases Risk of Small-for-Gestational-Age and Preterm Births in Low- and Middle-Income Countries: Individual Participant Data Meta-Analysis and Population Attributable Fraction. J. Nutr. 145, 2542–2550 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Shamim, A. A. et al. Plasma zinc, vitamin B(12) and α-tocopherol are positively and plasma γ-tocopherol is negatively associated with Hb concentration in early pregnancy in north-west Bangladesh. Public Health Nutr. 16, 1354–1361 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vohr, B. R., Poggi Davis, E., Wanke, C. A. & Krebs, N. F. Neurodevelopment: The Impact of Nutrition and Inflammation During Preconception and Pregnancy in Low-Resource Settings. Pediatrics 139, S38–S49 (2017).

    Article  PubMed  Google Scholar 

  14. Méndez Leal, A. S. et al. Maternal early life stress is associated with pro-inflammatory processes during pregnancy. Brain Behav. Immun. 109, 285–291 (2023).

    Article  PubMed  Google Scholar 

  15. Sävman, K., Blennow, M., Gustafson, K., Tarkowski, E. & Hagberg, H. Cytokine response in cerebrospinal fluid after birth asphyxia. Pediatr. Res. 43, 746–751 (1998).

    Article  PubMed  Google Scholar 

  16. Foster-Barber, A., Dickens, B. & Ferriero, D. M. Human perinatal asphyxia: correlation of neonatal cytokines with MRI and outcome. Dev. Neurosci. 23, 213–218 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Leviton, A. et al. The relationship between early concentrations of 25 blood proteins and cerebral white matter injury in preterm newborns: the ELGAN study. J. Pediatr. 158, 897–903.e1 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, Y. W. et al. Chorioamnionitis and cerebral palsy in term and near-term infants. JAMA 290, 2677–2684 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Volpe, J. J. Dysmaturation of premature brain: importance, cellular mechanisms, and potential interventions. Pediatr. Neurol. 95, 42–66 (2019).

    Article  PubMed  Google Scholar 

  20. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Volpe, J. J. Microglia: Newly discovered complexity could lead to targeted therapy for neonatal white matter injury and dysmaturation. J. Neonatal Perinat. Med. 12, 239–242 (2019).

    Article  CAS  Google Scholar 

  22. Volpe, J. J., Kinney, H. C., Jensen, F. E. & Rosenberg, P. A. The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J. Dev. Neurosci. 29, 423–440 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hagberg, H. et al. The role of inflammation in perinatal brain injury. Nat. Rev. Neurol. 11, 192–208 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Volpe, J. J. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr. Res. 50, 553–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Inder, T. E., Anderson, N. J., Spencer, C., Wells, S. & Volpe, J. J. White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term. AJNR Am. J. Neuroradiol. 24, 805–809 (2003).

    PubMed  PubMed Central  Google Scholar 

  26. Volpe, J. J. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 8, 110–124 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dammann, O. & O’Shea, T. M. Cytokines and perinatal brain damage. Clin. Perinatol. 35, 643–663 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. McAdams, R. M. & Juul, S. E. The role of cytokines and inflammatory cells in perinatal brain injury. Neurol. Res. Int. 2012, 561494 (2012).

    PubMed  PubMed Central  Google Scholar 

  29. Back, S. A. White matter injury in the preterm infant: pathology and mechanisms. Acta. Neuropathol. 134, 331–349 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuban, K. C. K. et al. Systemic inflammation and cerebral palsy risk in extremely preterm infants. J. Child Neurol. 29, 1692–1698 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. O’Shea, T. M. et al. Elevated concentrations of inflammation-related proteins in postnatal blood predict severe developmental delay at 2 years of age in extremely preterm infants. J. Pediatr. 160, 395–401.e4 (2012).

    Article  PubMed  Google Scholar 

  32. O’Shea, T. M. et al. Inflammation-initiating illnesses, inflammation-related proteins, and cognitive impairment in extremely preterm infants. Brain Behav. Immun. 29, 104–112 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. O’Shea, T. M. et al. Elevated blood levels of inflammation-related proteins are associated with an attention problem at age 24 mo in extremely preterm infants. Pediatr. Res. 75, 781–787 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Leviton, A. et al. Early postnatal blood concentrations of inflammation-related proteins and microcephaly two years later in infants born before the 28th post-menstrual week. Early Hum. Dev. 87, 325–330 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Bartha, A. I. et al. Neonatal encephalopathy: association of cytokines with MR spectroscopy and outcome. Pediatr. Res. 56, 960–966 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, A. C. C. et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob. Health 1, e26–e36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Arifeen, S. E. et al. The effect of cord cleansing with chlorhexidine on neonatal mortality in rural Bangladesh: a community-based, cluster-randomised trial. Lancet 379, 1022–1028 (2012).

    Article  PubMed  Google Scholar 

  38. AMANHI (Alliance for Maternal and Newborn Health Improvement). et al. Development and validation of a simplified algorithm for neonatal gestational age assessment - protocol for the Alliance for Maternal Newborn Health Improvement (AMANHI) prospective cohort study. J. Glob. Health 7, 021201 (2017).

    Article  Google Scholar 

  39. Villar, J. et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 384, 857–868 (2014).

    Article  PubMed  Google Scholar 

  40. Fichorova, R. N. et al. Maternal microbe-specific modulation of inflammatory response in extremely low-gestational-age newborns. MBio 2, e00280–10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Leviton, A. et al. Systemic inflammation on postnatal days 21 and 28 and indicators of brain dysfunction 2years later among children born before the 28th week of gestation. Early Hum. Dev. 93, 25–32 (2016).

    Article  PubMed  Google Scholar 

  42. Jiang, N. M. et al. Early life inflammation and neurodevelopmental outcome in Bangladeshi infants growing up in adversity. Am. J. Trop. Med. Hyg. 97, 974–979 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang, N. M. et al. Febrile illness and pro-inflammatory cytokines are associated with lower neurodevelopmental scores in Bangladeshi infants living in poverty. BMC Pediatr. 14, 50 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fichorova, R. N. et al. Biological and technical variables affecting immunoassay recovery of cytokines from human serum and simulated vaginal fluid: a multicenter study. Anal. Chem. 80, 4741–4751 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hecht, J. L. et al. Relationship between neonatal blood protein concentrations and placenta histologic characteristics in extremely low GA newborns. Pediatr. Res. 69, 68–73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leviton, A. et al. Two-hit model of brain damage in the very preterm newborn: small for gestational age and postnatal systemic inflammation. Pediatr. Res. 73, 362–370 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Martin, C. R., Bellomy, M., Allred, E. N., Fichorova, R. N. & Leviton, A. Systemic inflammation associated with severe intestinal injury in extremely low gestational age newborns. Fetal. Pediatr. Pathol. 32, 222–234 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. McElrath, T. F., Allred, E. N., Van Marter, L., Fichorova, R. N. & Leviton, A., ELGAN Study Investigators. Perinatal systemic inflammatory responses of growth-restricted preterm newborns. Acta Paediatr. 102, e439–e442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Taylor, B. D. et al. Inflammation biomarkers in vaginal fluid and preterm delivery. Hum. Reprod. 28, 942–952 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kuban, K. C. K. et al. Association of Circulating Proinflammatory and Anti-inflammatory Protein Biomarkers in Extremely Preterm Born Children with Subsequent Brain Magnetic Resonance Imaging Volumes and Cognitive Function at Age 10 Years. J. Pediatr. 210, 81–90.e3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Albers, C. A. & Grieve, A. J. Test Review: Bayley, N. (2006). Bayley Scales of Infant and Toddler Development- Third Edition. San Antonio, TX: Harcourt Assessment. J. Psychoeduc. Assess. 25, 180–190 (2007).

    Article  Google Scholar 

  52. Hamadani, J. D. et al. Randomized controlled trial of the effect of zinc supplementation on the mental development of Bangladeshi infants. Am. J. Clin. Nutr. 74, 381–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Black, M. M. et al. Iron and zinc supplementation promote motor development and exploratory behavior among Bangladeshi infants. Am. J. Clin. Nutr. 80, 903–910 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Hamadani, J. D., Huda, S. N., Khatun, F. & Grantham-McGregor, S. M. Psychosocial stimulation improves the development of undernourished children in rural Bangladesh. J. Nutr. 136, 2645–2652 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Tofail, F. et al. The mental development and behavior of low-birth-weight Bangladeshi infants from an urban low-income community. Eur. J. Clin. Nutr. 66, 237–243 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Hamadani, J. D. et al. Integrating an early childhood development programme into Bangladeshi primary health-care services: an open-label, cluster-randomised controlled trial. Lancet Glob. Health 7, e366–e375 (2019).

    Article  PubMed  Google Scholar 

  57. Mehrin, S. F. et al. Integrating a Group-Based, Early Childhood Parenting Intervention Into Primary Health Care Services in Rural Bangladesh: A Cluster-Randomized Controlled Trial. Front Pediatr. 10, 886542 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tofail, F. et al. An Integrated Mother-Child Intervention on Child Development and Maternal Mental Health. Pediatrics 151, e2023060221G (2023).

    Article  PubMed  Google Scholar 

  59. Pendergast, L. L. et al. Assessing development across cultures: Invariance of the Bayley-III Scales Across Seven International MAL-ED sites. Sch. Psychol. Q. 33, 604–614 (2018).

    Article  PubMed  Google Scholar 

  60. Nahar, B. et al. Early childhood development and stunting: Findings from the MAL-ED birth cohort study in Bangladesh. Matern. Child Nutr. 16, e12864 (2020).

    Article  PubMed  Google Scholar 

  61. Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 80, 27–38 (1993).

    Article  Google Scholar 

  62. Lee, A. C. et al. Maternal diet, infection, and risk of cord blood inflammation in the Bangladesh Projahnmo pregnancy cohort. Nutrients 13, 3792 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Colonna, M. & Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35, 441–468 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hansen-Pupp, I. et al. Inflammation at birth is associated with subnormal development in very preterm infants. Pediatr. Res. 64, 183–188 (2008).

    Article  PubMed  Google Scholar 

  65. Liu, C., Chen, Y., Zhao, D., Zhang, J. & Zhang, Y. Association between funisitis and childhood intellectual development: A prospective cohort study. Front Neurol. 10, 612 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Badawi, N. et al. Antepartum risk factors for newborn encephalopathy: the Western Australian case-control study. BMJ 317, 1549–1553 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McIntyre, S., Blair, E., Badawi, N., Keogh, J. & Nelson, K. B. Antecedents of cerebral palsy and perinatal death in term and late preterm singletons. Obstet. Gynecol. 122, 869–877 (2013).

    Article  PubMed  Google Scholar 

  68. Sacchi, C. et al. Association of Intrauterine Growth Restriction and Small for Gestational Age Status With Childhood Cognitive Outcomes: A Systematic Review and Meta-analysis. JAMA Pediatr. 174, 772–781 (2020).

    Article  PubMed  Google Scholar 

  69. Levine, T. A. et al. Early childhood neurodevelopment after intrauterine growth restriction: a systematic review. Pediatrics 135, 126–141 (2015).

    Article  PubMed  Google Scholar 

  70. Burton, G. J. & Jauniaux, E. Pathophysiology of placental-derived fetal growth restriction. Am. J. Obstet. Gynecol. 218, S745–S761 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Wu B. A. et al. Effects of fetal growth restriction on the perinatal neurovascular unit and possible treatment targets. Pediatr Res. Published online September 6. https://doi.org/10.1038/s41390-023-02805-w (2023).

  72. Campbell, L. R. et al. Intracerebral lipopolysaccharide induces neuroinflammatory change and augmented brain injury in growth-restricted neonatal rats. Pediatr. Res. 71, 645–652 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dubois, J. et al. Primary cortical folding in the human newborn: an early marker of later functional development. Brain 131, 2028–2041 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Samuelsen, G. B. et al. Severe cell reduction in the future brain cortex in human growth-restricted fetuses and infants. Am. J. Obstet. Gynecol. 197, 56.e1–7 (2007).

    Article  PubMed  Google Scholar 

  75. Ross, M. M. et al. A randomized controlled trial investigating the impact of maternal dietary supplementation with pomegranate juice on brain injury in infants with IUGR. Sci. Rep. 11, 3569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Han, V. X., Patel, S., Jones, H. F. & Dale, R. C. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat. Rev. Neurol. 17, 564–579 (2021).

    Article  PubMed  Google Scholar 

  77. Hsiao, E. Y. & Patterson, P. H. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav. Immun. 25, 604–615 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Mandal, M., Marzouk, A. C., Donnelly, R. & Ponzio, N. M. Maternal immune stimulation during pregnancy affects adaptive immunity in offspring to promote development of TH17 cells. Brain Behav. Immun. 25, 863–871 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Fatemi, S. H. et al. Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: implications for genesis of neurodevelopmental disorders. Schizophr. Res. 99, 56–70 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Meyer, U. et al. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol. Psychiatry 13, 208–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Meyer, U. et al. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J. Neurosci. 26, 4752–4762 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Garay, P. A., Hsiao, E. Y., Patterson, P. H. & McAllister, A. K. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain Behav. Immun. 31, 54–68 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Le Ray, I. et al. Changes in maternal blood inflammatory markers as a predictor of chorioamnionitis: a prospective multicenter study. Am. J. Reprod. Immunol. 73, 79–90 (2015).

    Article  PubMed  Google Scholar 

  84. Romero, R. et al. Clinical chorioamnionitis at term IV: the maternal plasma cytokine profile. J. Perinat. Med. 44, 77–98 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kaukola, T. et al. Population cohort associating chorioamnionitis, cord inflammatory cytokines and neurologic outcome in very preterm, extremely low birth weight infants. Pediatr. Res 59, 478–483 (2006).

    Article  PubMed  Google Scholar 

  86. Malkova, N. V., Yu, C. Z., Hsiao, E. Y., Moore, M. J. & Patterson, P. H. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav. Immun. 26, 607–616 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Patterson, P. H. Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav. Brain Res. 204, 313–321 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Graham, A. M. et al. Maternal Systemic Interleukin-6 During Pregnancy Is Associated With Newborn Amygdala Phenotypes and Subsequent Behavior at 2 Years of Age. Biol. Psychiatry 83, 109–119 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Rudolph, M. D. et al. Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat. Neurosci. 21, 765–772 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Spann, M. N., Monk, C., Scheinost, D. & Peterson, B. S. Maternal Immune Activation During the Third Trimester Is Associated with Neonatal Functional Connectivity of the Salience Network and Fetal to Toddler Behavior. J. Neurosci. 38, 2877–2886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sherwood, E. R. & Prough, D. S. Interleukin-8, neuroinflammation, and secondary brain injury. Crit. Care Med. 28, 1221–1223 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Najati, N., Rafeey, M. & Melekian, T. Comparison of umbilical cord interlukin-8 in low birth weight infants with premature rupture of membranes and intact membranes. Pak. J. Biol. Sci. 12, 1094–1097 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Carlo, W. A. et al. Cytokines and neurodevelopmental outcomes in extremely low birth weight infants. J. Pediatr. 159, 919–25.e3 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bach, A. M. et al. Systemic inflammation during the first year of life is associated with brain functional connectivity and future cognitive outcomes. Dev. Cogn. Neurosci. 53, 101041 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Rothman, K. J. No adjustments are needed for multiple comparisons. Epidemiology 1, 43–46 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. Kuban, K. C. K. et al. The breadth and type of systemic inflammation and the risk of adverse neurological outcomes in extremely low gestation newborns. Pediatr. Neurol. 52, 42–48 (2015).

    Article  PubMed  Google Scholar 

  97. Rogawski McQuade, E. T. et al. Impact of Shigella infections and inflammation early in life on child growth and school-aged cognitive outcomes: Findings from three birth cohorts over eight years. PLoS Negl. Trop. Dis. 16, e0010722 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Projahnmo research and field staff for implementing the study, and the mothers and children who participated in the study. Dr. Lee would like to thank K23 mentors and advisors (Terrie Inder, Abdullah Baqui, Raina Fichorova, Charles Nelson, Emily Oken and Wafaie Fawzi), the WHO AMANHI Study group, and Tessa Kehoe for assisting with formatting the manuscript for submission. This research was funded by the National Institutes of Child Health and Development (grant number 5K23HD091390). This work co-funded by the Bill & Melinda Gates Foundation through a grant to the World Health Organization/Johns Hopkins University.

Author information

Authors and Affiliations

Authors

Contributions

A.C.L., A.H.B., T.I., C.A.N., E.O., and R.F. contributed to the conceptualization and design of the study. F.T., S.R., S.A., R.K., A.H.B., and A.C.L. contributed to acquisition of data. R.F. conducted laboratory analyses. N.H.C. and R.K. contributed to data curation. S.C., A.C.L., L.V.F., and I.O. contributed to the analysis and interpretation of data. A.C.L. drafted the manuscript. A.C.L., S.C., F.T., L.V.F., S.A., S.R., N.H.C., R.K., I.O., E.O., R.F., C.A.N, A.H.B, and T.I. critically revised the manuscript for important intellectual content. All authors have approved of the final version to be published.

Corresponding author

Correspondence to Anne CC Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Informed consent

Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, A.C., Cherkerzian, S., Tofail, F. et al. Perinatal inflammation, fetal growth restriction, and long-term neurodevelopmental impairment in Bangladesh. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03101-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03101-x

Search

Quick links