Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Fetal programming and lactation: modulating gene expression in response to undernutrition during intrauterine life

Abstract

Background

Adverse environmental conditions during intrauterine life, known as fetal programming, significantly contribute to the development of diseases in adulthood. Fetal programming induced by factors like maternal undernutrition leads to low birth weight and increases the risk of cardiometabolic diseases.

Methods

We studied a rat model of maternal undernutrition during gestation (MUN) to investigate gene expression changes in cardiac tissue using RNA-sequencing of day 0–1 litters. Moreover, we analyzed the impact of lactation at day 21, in MUN model and cross-fostering experiments, on cardiac structure and function assessed by transthoracic echocardiography, and gene expression changes though qPCR.

Results

Our analysis identified specific genes with altered expression in MUN rats at birth. Two of them, Agt and Pparg, stand out for being associated with cardiac hypertrophy and fibrosis. At the end of the lactation period, MUN males showed increased expression of Agt and decreased expression of Pparg, correlating with cardiac hypertrophy. Cross-fostering experiments revealed that lactation with control breastmilk mitigated these expression changes reducing cardiac hypertrophy in MUN males.

Conclusions

Our findings highlight the interplay between fetal programming, gene expression, and cardiac hypertrophy suggesting that lactation period is a potential intervention window to mitigate the effects of fetal programming.

Impact

  • Heart remodeling involves the alteration of several groups of genes and lactation period plays a key role in establishing gene expression modification caused by fetal programming.

  • We could identify expression changes of relevant genes in cardiac tissue induced by undernutrition during fetal life.

  • We expose the contribution of the lactation period in modulating the expression of Agt and Pparg, relevant genes associated with cardiac hypertrophy.

  • This evidence reveal lactation as a crucial intervention window for preventing or countering fetal programming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Body and heart weighs at birth in MUN male and female rats.
Fig. 2: Differential gene expression at birth in MUN male rats.
Fig. 3: Differential Agt and Pparg expression in MUN and cross-fostered rats.
Fig. 4: Left ventricular mass index (LVMI) and ejection fraction (EF) in MUN and cross-fostered rats.
Fig. 5: Graphical abstract summarizing cardiac gene expression modulation in response to undernutrition and the impact of lactation period.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kwon, E. J. & Kim, Y. J. What is fetal programming?: a lifetime health is under the control of in utero health. Obstet Gynecol Sci 60, 506–519 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hult, M. et al. Hypertension, diabetes and overweight: looming legacies of the Biafran famine. PLoS One 5, e13582 (2010).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  3. Arima, Y. & Fukuoka, H. Developmental origins of health and disease theory in cardiology. J Cardiol 76, 14–17 (2020).

    Article  PubMed  Google Scholar 

  4. Qin, L., Luo, B., Gao, F., Feng, X. & Liu, J. Effect of Exposure to Famine during Early Life on Risk of Metabolic Syndrome in Adulthood: A Meta-Analysis. J Diabetes Res 2020, 3251275 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shu, Z. et al. Effects of fetal famine exposure on the cardiovascular disease risk in the metabolic syndrome individuals. Diabetol Metab Syndr 14, 173 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hidayat, K., Du, X., Shi, B. & Qin, L. Foetal and childhood exposure to famine and the risks of cardiometabolic conditions in adulthood: A systematic review and meta-analysis of observational studies. Obes Rev 21, e12981 (2020).

    Article  PubMed  Google Scholar 

  7. Rodríguez-Rodríguez, P. et al. Long term effects of fetal undernutrition on rat heart. Role of hypertension and oxidative stress. PLoS One 12, e0171544 (2017).

    PubMed  Google Scholar 

  8. Rodríguez-Rodríguez, P. et al. Fetal undernutrition is associated with perinatal sex-dependent alterations in oxidative status. J Nutr Biochem 26, 1650–1659 (2015).

    Article  PubMed  Google Scholar 

  9. Rodríguez-Rodríguez, P. et al. Implication of RAS in Postnatal Cardiac Remodeling, Fibrosis and Dysfunction Induced by Fetal Undernutrition. Pathophysiology 28, 273–290 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vieira-Rocha, M. S. et al. Fetal Undernutrition Modifies Vascular RAS Balance Enhancing Oxidative Damage and Contributing to Remodeling. Int J Mol Sci 23, 1233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Muñoz-Valverde, D. et al. Effect of fetal undernutrition and postnatal overfeeding on rat adipose tissue and organ growth at early stages of postnatal development. Physiol Res 64, 547–559 (2015).

    Article  PubMed  Google Scholar 

  12. Gutiérrez-Arzapalo, P. Y. et al. Role of fetal nutrient restriction and postnatal catch-up growth on structural and mechanical alterations of rat aorta. J Physiol 596, 5791–5806 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Priviero, F. Epigenetic modifications and fetal programming: Molecular mechanisms to control hypertension inheritance. Biochem Pharmacol 208, 115412 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goyal, D., Limesand, S. W. & Goyal, R. Epigenetic responses and the developmental origins of health and disease. J Endocrinol 242, T105–T119 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Harary, D., Akinyemi, A., Charron, M. J. & Fuloria, M. Fetal Growth and Intrauterine Epigenetic Programming of Obesity and Cardiometabolic Disease. Neoreviews 23, e363–e372 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gilbert, J. S. & Nijland, M. J. Sex differences in the developmental origins of hypertension and cardiorenal disease. Am J Physiol Regul Integr Comp Physiol 295, 1941 (2008).

    Article  Google Scholar 

  17. Nakada S., Ho F. K., Celis-Morales C., Pell J. P. Association between being breastfed and cardiovascular disease: a population cohort study of 320 249 participants. J Public Health (Oxf) fdad016 (2023).

  18. Wong, P. D. et al. The Association of Breastfeeding Duration and Early Childhood Cardiometabolic Risk. J Pediatr 192, 80–85.e1 (2018).

    Article  PubMed  Google Scholar 

  19. Singhal, A. Long-Term Adverse Effects of Early Growth Acceleration or Catch-Up Growth. Ann Nutr Metab 70, 236–240 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Rodríguez-Rodríguez, P. et al. Slower Growth during Lactation Rescues Early Cardiovascular and Adipose Tissue Hypertrophy Induced by Fetal Undernutrition in Rats. Biomedicines 10, 2504 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lesage J., Blondeau B., Grino M., Bréant B., Dupouy J. P. Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat. 2001 May;142:1692–1702.

  22. Reyes-Hernández, C. G. et al. Effects of Arachidonic and Docosohexahenoic Acid Supplementation during Gestation in Rats. Implication of Placental Oxidative. Stress. 19, 3863 (2018).

    Google Scholar 

  23. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550–558 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 57, 289–300 (1995).

    Article  MathSciNet  Google Scholar 

  26. Thomas, P. D. et al. PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci 31, 8–22 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Mi, H., Muruganujan, A. & Thomas, P. D. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 41, 377 (2013).

    Article  Google Scholar 

  28. Langnaese, K., John, R., Schweizer, H., Ebmeyer, U. & Keilhoff, G. Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model. BMC Mol Biol 9, 53 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li, L. et al. Angiotensin II increases periostin expression via Ras/p38 MAPK/CREB and ERK1/2/TGF-β1 pathways in cardiac fibroblasts. Cardiovasc Res 91, 80–89 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Ferrario, C. M. et al. Cardiac angiotensin-(1-12) expression and systemic hypertension in rats expressing the human angiotensinogen gene. Am J Physiol Heart Circ Physiol 310, 995 (2016).

    Article  Google Scholar 

  31. Chan, S. H. H., Wu, K. L. H., Kung, P. S. S. & Chan, J. Y. H. Oral intake of rosiglitazone promotes a central antihypertensive effect via upregulation of peroxisome proliferator-activated receptor-gamma and alleviation of oxidative stress in rostral ventrolateral medulla of spontaneously hypertensive rats. Hypertension 55, 1444–1453 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Montaigne, D., Butruille, L. & Staels, B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol 18, 809–823 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Sundrani D. P., Karkhanis A. R., Joshi S. R. Peroxisome Proliferator-Activated Receptors (PPAR), fatty acids and microRNAs: Implications in women delivering low birth weight babies. 2021 Feb;67:24–41.

  34. Wallace J. M. et al. Undernutrition and stage of gestation influence fetal adipose tissue gene expression. 2015 Jun;54:263–275.

  35. Muroya, S. et al. Maternal Undernutrition during Pregnancy Alters Amino Acid Metabolism and Gene Expression Associated with Energy Metabolism and Angiogenesis in Fetal Calf Muscle. Metabolites 11, 582 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, Y. et al. Effects of intrauterine growth restriction during late pregnancy on the cell apoptosis and related gene expression in ovine fetal liver. Theriogenology 90, 204–209 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Muaku, S. M. et al. Effects of maternal protein malnutrition on fetal growth, plasma insulin-like growth factors, insulin-like growth factor binding proteins, and liver insulin-like growth factor gene expression in the rat. Pediatr Res 37, 334–342 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Baker, K. M., Chernin, M. I., Wixson, S. K. & Aceto, J. F. Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 259, 324 (1990).

    Google Scholar 

  39. Kawamura M. et al. Undernutrition in Utero Augments Systolic Blood Pressure and Cardiac Remodeling in Adult Mouse Offspring: Possible Involvement of Local Cardiac Angiotensin System in Developmental Origins of Cardiovascular Disease. 2007 [cited 2023];148:1218–1225. Available from: https://doi.org/10.1210/en.2006-0706.

  40. Lehman, J. J. & Kelly, D. P. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol 29, 339–345 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Duan S. Z., Ivashchenko C. Y., Russell M. W., Milstone D. S., Mortensen R. M. Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice. 2005 Aug 19;97:372–379.

  42. Sack, M. N., Disch, D. L., Rockman, H. A. & Kelly, D. P. A role for Sp and nuclear receptor transcription factors in a cardiac hypertrophic growth program. Proc Natl Acad Sci USA 94, 6438–6443 (1997). -06-10.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Kökény, G., Calvier, L. & Hansmann, G. PPARγ and TGFβ-Major Regulators of Metabolism, Inflammation, and Fibrosis in the Lungs and Kidneys. Int J Mol Sci 22, 10431 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ahmed, A. et al. Maternal obesity persistently alters cardiac progenitor gene expression and programs adult-onset heart disease susceptibility. Mol Metab 43, 101116 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Harrison, C. B. et al. Fibroblast Nox2 (NADPH Oxidase-2) Regulates ANG II (Angiotensin II)-Induced Vascular Remodeling and Hypertension via Paracrine Signaling to Vascular Smooth Muscle. Cells. 41, 698–710 (2021).

    CAS  Google Scholar 

  46. Boyle K. E., Magill-Collins M. J., Newsom S. A., Janssen R. C., Friedman J. E. Maternal Fat-1 Transgene Protects Offspring from Excess Weight Gain, Oxidative Stress, and Reduced Fatty Acid Oxidation in Response to High-Fat Diet. 2020 Mar 14;12:767. https://doi.org/10.3390/nu12030767.

  47. Miller M. A. et al. Gene and metabolite time-course response to cigarette smoking in mouse lung and plasma. 2017 Jun 2;12:e0178281.

  48. Jensen K. A., Shi X., Yan S. Genomic alterations and abnormal expression of APE2 in multiple cancers. 2020 Feb 28;10:3758-020-60656–5.

  49. Tarry-Adkins J. L. et al. Poor maternal nutrition followed by accelerated postnatal growth leads to alterations in DNA damage and repair, oxidative and nitrosative stress, and oxidative defense capacity in rat heart. 2013 Jan;27:379–390.

  50. Ozkan, H. et al. Epigenetic Programming Through Breast Milk and Its Impact on Milk-Siblings Mating. Front Genet 11, 569232 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barua, S. et al. Increasing maternal or post-weaning folic acid alters gene expression and moderately changes behavior in the offspring. PLoS One 9, e101674 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  52. Cadée, J. A. et al. Bovine casein hydrolysate (c12 Peptide) reduces blood pressure in prehypertensive subjects. Am J Hypertens 20, 1–5 (2007).

    Article  PubMed  Google Scholar 

  53. Sánchez, C. et al. Breast Milk: A Source of Functional Compounds with Potential Application in Nutrition and Therapy. Nutrients 13, 1026 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hatmal, M. M. et al. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 10, 1219 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ramiro-Cortijo, D. et al. Association between Adherence to the Healthy Food Pyramid and Breast Milk Fatty Acids in the First Month of Lactation. Nutrients 14, 5280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ramiro-Cortijo, D. et al. Association of maternal body composition and diet on breast milk hormones and neonatal growth during the first month of lactation. Front Endocrinol (Lausanne) 14, 1090499 (2023).

    Article  PubMed  Google Scholar 

  57. Takeda, Y., Demura, M., Yoneda, T. & Takeda, Y. DNA Methylation of the Angiotensinogen Gene, AGT, and the Aldosterone Synthase Gene, CYP11B2 in Cardiovascular Diseases. Int J Mol Sci 22, 4587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Paredes, A. et al. γ-Linolenic acid in maternal milk drives cardiac metabolic maturation. Nature 618, 365–373 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Funding

This research was funded by Ministerio de Ciencia, Innovación y Universidades from Spain (grant number RTI2018-097504-B-I00), Instituto de Salud Carlos III (ISCIII) (grant number PI20/00306) with co-funding from the European Regional Development Fund (ERDF) “A way to build Europe”. R.G.B. was supported by the UAM and the MCNU FPU program (FPU19/01774) and A.S. by Universidad Francisco de Vitoria.

Author information

Authors and Affiliations

Authors

Contributions

I.M.C., R.G.B., P.R.-R., A.S., S.M.A.: data acquisition and data analysis (animal model, tissue dissection). P.R.-R., B.Q.-V.: data acquisition, analysis, and interpretation (echocardiography). I.M.C., R.G.B., J.M.G.G., S.M.A.: data acquisition, analysis, and interpretation (RNAseq analysis). I.M.C., R.G.B, J.M.G.G., S.M.A.: data acquisition, analysis, and interpretation (qPCR analysis). I.M.C., J.M.G.G., S.M.A.: conception or design of the work, drafting of the manuscript and project administration. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Jose Maria González Granado or Silvia Magdalena Arribas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The study was conducted according to the guidelines of the Declaration of Helsinki, and it was approved by the Ethics Review Boards of Universidad Autónoma de Madrid (CEI-UAM 96-1776-A286) and the Regional Environment Committee of the Comunidad Autónoma de Madrid (RD 53/2013; Ref. PROEX 04/19; date 19 March 2019).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monedero Cobeta, I., Gomez Bris, R., Rodríguez-Rodríguez, P. et al. Fetal programming and lactation: modulating gene expression in response to undernutrition during intrauterine life. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03042-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03042-5

Search

Quick links