Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Dual inhibition of complement C5 and CD14 attenuates inflammation in a cord blood model

Abstract

Background

Escherichia coli and Group B streptococci (GBS) are the main causes of neonatal early-onset sepsis (EOS). Despite antibiotic therapy, EOS is associated with high morbidity and mortality. Dual inhibition of complement C5 and the Toll-like receptor co-factor CD14 has in animal studies been a promising novel therapy for sepsis.

Methods

Whole blood was collected from the umbilical cord after caesarean section (n = 30). Blood was anti-coagulated with lepirudin. C5 inhibitor (eculizumab) and anti-CD14 was added 8 min prior to, or 15 and 30 min after adding E. coli or GBS. Total bacterial incubation time was 120 min (n = 16) and 240 min (n = 14). Cytokines and the terminal complement complex (TCC) were measured using multiplex technology and ELISA.

Results

Dual inhibition significantly attenuated TCC formation by 25-79% when adding inhibitors with up to 30 min delay in both E. coli- and GBS-induced inflammation. TNF, IL-6 and IL-8 plasma concentration were significantly reduced by 28–87% in E. coli-induced inflammation when adding inhibitors with up to 30 min delay. The dual inhibition did not significantly reduce TNF, IL-6 and IL-8 plasma concentration in GBS-induced inflammation.

Conclusion

Dual inhibition of C5 and CD14 holds promise as a potential future treatment for severe neonatal EOS.

Impact

  • Neonatal sepsis can cause severe host inflammation with high morbidity and mortality, but there are still no effective adjunctive immunologic interventions available.

  • Adding CD14 and complement C5 inhibitors up to 30 min after incubation of E. coli or Group B streptococci in a human umbilical cord blood model significantly reduced complement activation and cytokine release.

  • Dual inhibition of C5 and CD14 is a potential future therapy to modulate systemic inflammation in severe cases of neonatal sepsis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graphical abstract: cartoon of the dual inhibition of complement C5 and the TLR CD14 co-receptor.
Fig. 2
Fig. 3: TCC cord plasma concentrations after 120 min incubation time.
Fig. 4: TCC cord plasma concentrations after 240 min incubation time.
Fig. 5: Cytokine cord plasma concentrations after 120 min incubation time.

Similar content being viewed by others

Data availability

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Vergnano, S., Sharland, M., Kazembe, P., Mwansambo, C. & Heath, P. Neonatal sepsis: an international perspective. Arch. Dis. Child. Fetal Neonatal Ed. 90, F220–F224 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Oza, S., Lawn, J. E., Hogan, D. R., Mathers, C. & Cousens, S. N. Neonatal Cause-of-death estimates for the early and late neonatal periods for 194 countries: 2000–2013. Bull. World Health Organ. 93, 19–28 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. Stoll, B. J. et al. Early-onset neonatal sepsis 2015 to 2017, the rise of Escherichia coli, and the need for novel prevention strategies. JAMA Pediatr. 174, e200593 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. Flannery, D. D., Edwards, E. M., Puopolo, K. M. & Horbar, J. D. Early-onset sepsis among very preterm infants. Pediatrics 148, e2021052456 (2021).

    PubMed  Google Scholar 

  5. Wynn, J., Cornell, T. T., Wong, H. R., Shanley, T. P. & Wheeler, D. S. The host response to sepsis and developmental impact. Pediatrics 125, 1031–1041 (2010).

    PubMed  Google Scholar 

  6. Hajishengallis, G., Reis, E. S., Mastellos, D. C., Ricklin, D. & Lambris, J. D. Novel mechanisms and functions of complement. Nat. Immunol. 18, 1288–1298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pietrocola, G. et al. The group B streptococcus–secreted protein Cip interacts with C4, preventing C3b deposition via the lectin and classical complement pathways. J. Immunol. 196, 385–394 (2016).

    CAS  PubMed  Google Scholar 

  8. Ward, P. A. The dark side of C5a in sepsis. Nat. Rev. Immunol. 4, 133–142 (2004).

    CAS  PubMed  Google Scholar 

  9. De Jong, H. K., Van Der Poll, T. & Wiersinga, W. J. The systemic pro-inflammatory response in sepsis. J. Innate Immun. 2, 422–430 (2010).

    PubMed  Google Scholar 

  10. Gabay, C. & Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340, 448–454 (1999).

    CAS  PubMed  Google Scholar 

  11. Chauhan, N., Tiwari, S. & Jain, U. Potential biomarkers for effective screening of neonatal sepsis infections: an overview. Microb. Pathog. 107, 234–242 (2017).

    CAS  PubMed  Google Scholar 

  12. Barratt‐Due, A., Pischke, S. E., Nilsson, P. H., Espevik, T. & Mollnes, T. E. Dual inhibition of complement and toll‐like receptors as a novel approach to treat inflammatory diseases—C3 or C5 emerge together with CD14 as promising targets. J. Leukoc. Biol. 101, 193–204 (2017).

    PubMed  Google Scholar 

  13. Schüller, S. S. et al. Immunomodulation to prevent or treat neonatal sepsis: past, present, and future. Front. Pediatr. 6, 199 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Wynn, J. L. & Levy, O. Role of innate host defenses in susceptibility to early-onset neonatal sepsis. Clin. Perinatol. 37, 307–337 (2010).

    PubMed  PubMed Central  Google Scholar 

  15. Nilsen, N. J. et al. Cellular trafficking of lipoteichoic acid and toll‐like receptor 2 in relation to signaling; role of CD14 and CD36. J. Leukoc. Biol. 84, 280–291 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lotz, S. et al. Highly purified lipoteichoic acid activates neutrophil granulocytes and delays their spontaneous apoptosis via CD14 and TLR2. J. Leukoc. Biol. 75, 467–477 (2004).

    CAS  PubMed  Google Scholar 

  17. Skjeflo, E. W., Christiansen, D., Espevik, T., Nielsen, E. W. & Mollnes, T. E. Combined inhibition of complement and CD14 efficiently attenuated the inflammatory response induced by Staphylococcus aureus in a human whole blood model. J. Immunol. 192, 2857–2864 (2014).

    CAS  PubMed  Google Scholar 

  18. Puopolo, K. M., Benitz, W. E., Zaoutis, T. E. & Diseases, C. O. I. Management of neonates born at ≥ 35 0/7 weeks’ gestation with suspected or proven early-onset bacterial sepsis. Pediatrics 142, e20182894 (2018).

    PubMed  Google Scholar 

  19. Klingenberg, C., Kornelisse, R. F., Buonocore, G., Maier, R. F. & Stocker, M. Culture-negative early-onset neonatal sepsis—at the crossroad between efficient sepsis care and antimicrobial stewardship. Front. Pediatr. 6, 285 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Brekke, O.-L. et al. Combined inhibition of complement and CD14 abolish E. coli-induced cytokine-, chemokine-and growth factor-synthesis in human whole blood. Mol. Immunol. 45, 3804–3813 (2008).

    CAS  PubMed  Google Scholar 

  21. Thorgersen, E. B. et al. Inhibition of complement and CD14 attenuates the Escherichia coli-induced inflammatory response in porcine whole blood. Infect. Immun. 77, 725–732 (2009).

    CAS  PubMed  Google Scholar 

  22. Egge, K. H. et al. Post challenge inhibition of C3 and CD14 attenuates Escherichia coli-induced inflammation in human whole blood. Innate Immun. 20, 68–77 (2014).

    PubMed  Google Scholar 

  23. Egge, K. H. et al. The anti-inflammatory effect of combined complement and CD14 inhibition is preserved during escalating bacterial load. Clin. Exp. Immunol. 181, 457–467 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lau, C. et al. Chimeric anti-CD14 IgG/4 hybrid antibodies for therapeutic intervention in pig and human models of inflammation. J. Immunol. 191, 4769–4777 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mollnes, T. E. et al. Essential role of the C5a receptor in E. coli–induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood 100, 1869–1877 (2002).

    CAS  PubMed  Google Scholar 

  26. Bergseth, G. et al. An international serum standard for application in assays to detect human complement activation products. Mol. Immunol. 56, 232–239 (2013).

    CAS  PubMed  Google Scholar 

  27. Schlapbach, L. J. et al. Differential role of the lectin pathway of complement activation in susceptibility to neonatal sepsis. Clin. Infect. Dis. 51, 153–162 (2010).

    CAS  PubMed  Google Scholar 

  28. Eisen, D. P. & Minchinton, R. M. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin. Infect. Dis. 37, 1496–1505 (2003).

    CAS  PubMed  Google Scholar 

  29. Harboe, M., Thorgersen, E. B. & Mollnes, T. E. Advances in assay of complement function and activation. Adv. Drug Deliv. Rev. 63, 976–987 (2011).

    CAS  PubMed  Google Scholar 

  30. Zhao, X., Chen, Y.-X. & Li, C.-S. Predictive value of the complement system for sepsis-induced disseminated intravascular coagulation in septic patients in emergency department. J. Crit. Care 30, 290–295 (2015).

    PubMed  Google Scholar 

  31. Raymond, S. L. et al. Immunological defects in neonatal sepsis and potential therapeutic approaches. Front. Pediatr. 5, 14 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Mohamed, M. A., Cunningham-Rundles, S., Dean, C. R., Hammad, T. A. & Nesin, M. Levels of pro-inflammatory cytokines produced from cord blood in-vitro are pathogen dependent and increased in comparison to adult controls. Cytokine 39, 171–177 (2007).

    CAS  PubMed  Google Scholar 

  33. Østerholt, H. C., Lundeland, B., Sonerud, T., Saugstad, O. D. & Nakstad, B. The impact of hyaluronan on monocyte toll‐like receptor expression in term infant cord blood. Acta Paediatr. 101, 706–713 (2012).

    PubMed  Google Scholar 

  34. Tatad, A. F. et al. Cytokine expression in response to bacterial antigens in preterm and term infant cord blood monocytes. Neonatology 94, 8–15 (2008).

    CAS  PubMed  Google Scholar 

  35. Krueger, M. et al. Cord blood levels of interleukin-6 and interleukin-8 for the immediate diagnosis of early-onset infection in premature infants. Neonatology 80, 118–123 (2001).

    CAS  Google Scholar 

  36. Büscher, U. et al. IL-1β, IL-6, IL-8 and G-CSF in the diagnosis of early-onset neonatal infections. J. Perinat. Med. 28, 383–388 (2000).

  37. Berner, R., Welter, P. & Brandis, M. Cytokine expression of cord and adult blood mononuclear cells in response to Streptococcus agalactiae. Pediatr. Res. 51, 304–309 (2002).

    CAS  PubMed  Google Scholar 

  38. Kashlan, F. et al. Umbilical vein interleukin 6 and tumor necrosis factor alpha plasma concentrations in the very preterm infant. Pediatr. Infect. Dis. J. 19, 238–243 (2000).

    CAS  PubMed  Google Scholar 

  39. Garred, P., Tenner, A. J. & Mollnes, T. E. Therapeutic targeting of the complement system: from rare diseases to pandemics. Pharmacol. Rev. 73, 792–827 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Keshari, R. S. et al. Inhibition of complement C5 protects against organ failure and reduces mortality in a baboon model of Escherichia coli sepsis. Proc. Natl Acad. Sci. USA 114, E6390–E6399 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Reiss, U. M. et al. Efficacy and safety of eculizumab in children and adolescents with paroxysmal nocturnal hemoglobinuria. Pediatr. Blood Cancer 61, 1544–1550 (2014).

    CAS  PubMed  Google Scholar 

  42. Greenbaum, L. A. et al. Eculizumab is a safe and effective treatment in pediatric patients with atypical hemolytic uremic syndrome. Kidney Int. 89, 701–711 (2016).

    CAS  PubMed  Google Scholar 

  43. Olszyna, D. P. et al. Effect of IC14, an anti‐CD14 antibody, on plasma and cell‐associated chemokines during human endotoxemia. Eur. Cytokine Netw. 14, 158–162 (2003).

    CAS  PubMed  Google Scholar 

  44. Huber-Lang, M. et al. Double blockade of CD14 and complement C5 abolishes the cytokine storm and improves morbidity and survival in polymicrobial sepsis in mice. J. Immunol. 192, 5324–5331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Skjeflo, E. W. et al. Combined inhibition of complement and CD14 improved outcome in porcine polymicrobial sepsis. Crit. Care 19, 1–8 (2015).

    Google Scholar 

  46. Nakstad, B., Sonerud, T. & Solevåg, A. L. Early detection of neonatal group B Streptococcus sepsis and the possible diagnostic utility of IL-6, IL-8, and CD11b in a human umbilical cord blood in vitro model. Infect. Drug Resist. 9, 171 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Eichberger, J., Resch, E. & Resch, B. Diagnosis of neonatal sepsis: the role of inflammatory markers. Front. Pediatr. 10, 840288 (2022).

    PubMed  PubMed Central  Google Scholar 

  48. Mathews, J. H., Klesius, P. H. & Zimmerman, R. A. Opsonin system of the group B Streptococcus. Infect. Immun. 10, 1315–1320 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Draper, D. W., Bethea, H. N. & He, Y.-W. Toll-like receptor 2-dependent and-independent activation of macrophages by Group B Streptococci. Immunol. Lett. 102, 202–214 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all participating mothers for their contributions to this study and the personnel at the Department of Obstetrics at University Hospital of North Norway for important collaboration and help to organise the study.

Funding

The first author was funded by UiT-The Arctic University of Norway as a medical research student.

Author information

Authors and Affiliations

Authors

Contributions

Substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data: A.U.B., H.N.G., J.P.C., I.H., J.K.L., C.L., T.E., T.E.M., C.K. Drafting the article: A.U.B. and C.K. Critically revised the manuscript and approved the final version to be published: all authors.

Corresponding author

Correspondence to Aline U. Bjerkhaug.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was approved by the Regional Ethical Committee (2019/834/REK nord). All participating women gave informed written consent to participate in the study. All participants signed a written consent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjerkhaug, A.U., Granslo, H.N., Cavanagh, J.P. et al. Dual inhibition of complement C5 and CD14 attenuates inflammation in a cord blood model. Pediatr Res 94, 512–519 (2023). https://doi.org/10.1038/s41390-023-02489-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02489-2

Search

Quick links