Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PDIA2 has a dual function in promoting androgen deprivation therapy induced venous thrombosis events and castrate resistant prostate cancer progression

Abstract

Androgen deprivation therapy (ADT) is the first line of treatment for metastatic prostate cancer (PCa) that effectively delays the tumor progression. However, it also increases the risk of venous thrombosis event (VTE) in patients, a leading cause of mortality. How a pro-thrombotic cascade is induced by ADT remains poorly understood. Here, we report that protein disulfide isomerase A2 (PDIA2) is upregulated in PCa cells to promote VTE formation and enhance PCa cells resistant to ADT. Using various in vitro and in vivo models, we demonstrated a dual function of PDIA2 that enhances tumor-mediated pro-coagulation activity via tumor-derived extracellular vehicles (EVs). It also stimulates PCa cell proliferation, colony formation, and xenograft growth androgen-independently. Mechanistically, PDIA2 activates the tissue factor (TF) on EVs through its isomerase activity, which subsequently triggers a pro-thrombotic cascade in the blood. Additionally, TF-containing EVs can activate the Src kinase inside PCa cells to enhance the AR signaling ligand independently. Androgen deprivation does not alter PDIA2 expression in PCa cells but enhances PDIA2 translocation to the cell membrane and EVs via suppressing the clathrin-dependent endocytic process. Co-recruitment of AR and FOXA1 to the PDIA2 promoter is required for PDIA2 transcription under androgen-deprived conditions. Importantly, blocking PDIA2 isomerase activity suppresses the pro-coagulation activity of patient plasma, PCa cell, and xenograft samples as well as castrate-resistant PCa xenograft growth. These results demonstrate that PDIA2 promotes VTE and tumor progression via activating TF from tumor-derived EVs. They rationalize pharmacological inhibition of PDIA2 to suppress ADT-induced VTE and castrate-resistant tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PDIA2 expression is associated with prostate tumor progression and venous thrombosis events.
Fig. 2: PDIA2 promotes androgen-independent PCa tumor progression and thrombogenicity through PCa-derived extracellular vehicles(EVs).
Fig. 3: Androgen deprivation promotes PDIA2 trafficking in prostate cancer cells.
Fig. 4: PDIA2 active tissue factors (TF) on PCa-derived EVs.
Fig. 5: EVs bearing active TF activates AR through c-Src kinase for prostate cancer progression.
Fig. 6: PDIA2 expression is controlled by androgen-independent AR signaling in CRPC.
Fig. 7: Blocking PDIA2 activity inhibits CRPC progression and PCa-associated thrombosis.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bergengren O, Pekala KR, Matsoukas K, Fainberg J, Mungovan SF, Bratt O, et al. 2022 Update on prostate cancer epidemiology and risk factors-a systematic review. Eur Urol. 2023;84:191–206.

    Article  PubMed  Google Scholar 

  2. Gleave M, Goldenberg SL, Bruchovsky N, Rennie P. Intermittent androgen suppression for prostate cancer: rationale and clinical experience. Prostate Cancer Prostatic Dis. 1998;1:289–96.

    Article  CAS  PubMed  Google Scholar 

  3. Albertsen PC, Hanley JA, Fine J. 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA. 2005;293:2095–101.

    Article  CAS  PubMed  Google Scholar 

  4. Crawford ED, Moul JW, Sartor O, Shore ND. Extended release, 6-month formulations of leuprolide acetate for the treatment of advanced prostate cancer: achieving testosterone levels below 20 ng/dl. Expert Opin Drug Metab Toxicol. 2015;11:1465–74.

    Article  CAS  PubMed  Google Scholar 

  5. de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011;364:1995–2005.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ehdaie B, Atoria CL, Gupta A, Feifer A, Lowrance WT, Morris MJ, et al. Androgen deprivation and thromboembolic events in men with prostate cancer. Cancer. 2012;118:3397–406.

    Article  CAS  PubMed  Google Scholar 

  7. Klil-Drori AJ, Yin H, Tagalakis V, Aprikian A, Azoulay L. Androgen deprivation therapy for prostate cancer and the risk of venous thromboembolism. Eur Urol. 2016;70:56–61.

    Article  CAS  PubMed  Google Scholar 

  8. Guo Z, Huang Y, Gong L, Gan S, Chan FL, Gu C, et al. Association of androgen deprivation therapy with thromboembolic events in patients with prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2018;21:451–60.

    Article  CAS  PubMed  Google Scholar 

  9. Saigal CS, Gore JL, Krupski TL, Hanley J, Schonlau M, Litwin MS, et al. Androgen deprivation therapy increases cardiovascular morbidity in men with prostate cancer. Cancer. 2007;110:1493–1500.

    Article  CAS  PubMed  Google Scholar 

  10. Azoulay L, Yin H, Benayoun S, Renoux C, Boivin JF, Suissa S. Androgen-deprivation therapy and the risk of stroke in patients with prostate cancer. Eur Urol. 2011;60:1244–50.

    Article  CAS  PubMed  Google Scholar 

  11. Naess IA, Christiansen SC, Romundstad P, Cannegieter SC, Rosendaal FR, Hammerstrom J. Incidence and mortality of venous thrombosis: a population-based study. J Thromb Haemost. 2007;5:692–9.

    Article  CAS  PubMed  Google Scholar 

  12. Falanga A, Zacharski L. Deep vein thrombosis in cancer: the scale of the problem and approaches to management. Ann Oncol. 2005;16:696–701.

    Article  CAS  PubMed  Google Scholar 

  13. O’Farrell S, Sandstrom K, Garmo H, Stattin P, Holmberg L, Adolfsson J, et al. Risk of thromboembolic disease in men with prostate cancer undergoing androgen deprivation therapy. BJU Int. 2016;118:391–8.

    Article  PubMed  Google Scholar 

  14. Svartberg J, Braekkan SK, Laughlin GA, Hansen JB. Endogenous sex hormone levels in men are not associated with risk of venous thromboembolism: the Tromso study. Eur J Endocrinol. 2009;160:833–8.

    Article  CAS  PubMed  Google Scholar 

  15. Brodin E, Vikan T, Hansen JB, Svartberg J. Testosterone, hemostasis, and cardiovascular diseases in men. Semin Thromb Hemost. 2011;37:87–94.

    Article  CAS  PubMed  Google Scholar 

  16. Ferenchick GS, Hirokawa S, Mammen EF, Schwartz KA. Anabolic-androgenic steroid abuse in weight lifters: evidence for activation of the hemostatic system. Am J Hematol. 1995;49:282–8.

    Article  CAS  PubMed  Google Scholar 

  17. Abdol Razak NB, Jones G, Bhandari M, Berndt MC, Metharom P. Cancer-associated thrombosis: an overview of mechanisms, risk factors, and treatment. Cancers. 2018;10:380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Okwuosa TM, Morgans A, Rhee JW, Reding KW, Maliski S, Plana JC, et al. Impact of hormonal therapies for treatment of hormone-dependent cancers (breast and prostate) on the cardiovascular system: effects and modifications: a scientific statement from the American Heart Association. Circ Genom Precis Med. 2021;14:e000082.

    Article  CAS  PubMed  Google Scholar 

  19. Dvorak HF, Van DeWater L, Bitzer AM, Dvorak AM, Anderson D, Harvey VS, et al. Procoagulant activity associated with plasma membrane vesicles shed by cultured tumor cells. Cancer Res. 1983;43:4434–42.

    CAS  PubMed  Google Scholar 

  20. Yu JL, Rak JW. Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activity released from human cancer cells. J Thromb Haemost. 2004;2:2065–7.

    Article  CAS  PubMed  Google Scholar 

  21. Stark K, Schubert I, Joshi U, Kilani B, Hoseinpour P, Thakur M, et al. Distinct pathogenesis of pancreatic cancer microvesicle-associated venous thrombosis identifies new antithrombotic targets in vivo. Arterioscler Thromb Vasc Biol. 2018;38:772–86.

    Article  CAS  PubMed  Google Scholar 

  22. Al Saleh HA, Haas-Neill S, Al-Hashimi A, Kapoor A, Shayegan B, Austin RC, et al. Thrombotic characteristics of extracellular vesicles derived from prostate cancer cells. Prostate. 2018;78:953–61.

    Article  CAS  PubMed  Google Scholar 

  23. Chaudhry R, Usama SM, Babiker HM. Physiology, Coagulation Pathways. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.

  24. Kobayashi S, Koizume S, Takahashi T, Ueno M, Oishi R, Nagashima S, et al. Tissue factor and its procoagulant activity on cancer-associated thromboembolism in pancreatic cancer. Cancer Sci. 2021;112:4679–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu JL, May L, Lhotak V, Shahrzad S, Shirasawa S, Weitz JI, et al. Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood. 2005;105:1734–41.

    Article  CAS  PubMed  Google Scholar 

  26. Ahamed J, Versteeg HH, Kerver M, Chen VM, Mueller BM, Hogg PJ, et al. Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc Natl Acad Sci USA. 2006;103:13932–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rao LV, Pendurthi UR. Regulation of tissue factor coagulant activity on cell surfaces. J Thromb Haemost. 2012;10:2242–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reinhardt C, von Bruhl ML, Manukyan D, Grahl L, Lorenz M, Altmann B, et al. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation. J Clin Investig. 2008;118:1110–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen F, Zhao Z, Zhou J, Lu Y, Essex DW, Wu Y. Protein disulfide isomerase enhances tissue factor-dependent thrombin generation. Biochem Biophys Res Commun. 2018;501:172–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferrari DM, Soling HD. The protein disulphide-isomerase family: unravelling a string of folds. Biochem J. 1999;339:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Langer F, Spath B, Fischer C, Stolz M, Ayuk FA, Kroger N, et al. Rapid activation of monocyte tissue factor by antithymocyte globulin is dependent on complement and protein disulfide isomerase. Blood. 2013;121:2324–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zwicker JI, Schlechter BL, Stopa JD, Liebman HA, Aggarwal A, Puligandla M, et al. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI Insight. 2019;4:e125851.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Payne H, Brill A. Stenosis of the inferior vena cava: a murine model of deep vein thrombosis. J Vis Exp. 2017.

  34. Araujo TLS, Zeidler JD, Oliveira PVS, Dias MH, Armelin HA, Laurindo FRM. Protein disulfide isomerase externalization in endothelial cells follows classical and unconventional routes. Free Radic Biol Med. 2017;103:199–208.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou J, Wu Y, Wang L, Rauova L, Hayes VM, Poncz M, et al. The C-terminal CGHC motif of protein disulfide isomerase supports thrombosis. J Clin Investig. 2015;125:4391–406.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Versteeg HH, Schaffner F, Kerver M, Petersen HH, Ahamed J, Felding-Habermann B, et al. Inhibition of tissue factor signaling suppresses tumor growth. Blood. 2008;111:190–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rothmeier AS, Liu E, Chakrabarty S, Disse J, Mueller BM, Ostergaard H, et al. Identification of the integrin-binding site on coagulation factor VIIa required for proangiogenic PAR2 signaling. Blood. 2018;131:674–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kocaturk B, Tieken C, Vreeken D, Unlu B, Engels CC, de Kruijf EM, et al. Alternatively spliced tissue factor synergizes with the estrogen receptor pathway in promoting breast cancer progression. J Thromb Haemost. 2015;13:1683–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guo Z, Dai B, Jiang T, Xu K, Xie Y, Kim O, et al. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell. 2006;10:309–19.

    Article  CAS  PubMed  Google Scholar 

  40. Garcia-Carpizo V, Ruiz-Llorente S, Sarmentero J, Gonzalez-Corpas A, Barrero MJ. CREBBP/EP300 bromodomain inhibition affects the proliferation of AR-positive breast cancer cell lines. Mol Cancer Res. 2019;17:720–30.

    Article  CAS  PubMed  Google Scholar 

  41. Blom JW, Vanderschoot JP, Oostindier MJ, Osanto S, van der Meer FJ, Rosendaal FR. Incidence of venous thrombosis in a large cohort of 66,329 cancer patients: results of a record linkage study. J Thromb Haemost. 2006;4:529–35.

    Article  CAS  PubMed  Google Scholar 

  42. Goplen D, Wang J, Enger PO, Tysnes BB, Terzis AJ, Laerum OD, et al. Protein disulfide isomerase expression is related to the invasive properties of malignant glioma. Cancer Res. 2006;66:9895–902.

    Article  CAS  PubMed  Google Scholar 

  43. Wendler F, Bota-Rabassedas N, Franch-Marro X. Cancer becomes wasteful: emerging roles of exosomes(dagger) in cell-fate determination. J Extracell Vesicles. Wiley-Blackwell; 2013;2. https://doi.org/10.3402/jev.v2i0.22390.

  44. Wang S, Sun J, Dastgheyb RM, Li Z. Tumor-derived extracellular vesicles modulate innate immune responses to affect tumor progression. Front Immunol. 2022;13:1045624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kato T, Kawakami K, Mizutani K, Ando T, Sakai Y, Sakurai K, et al. H19 in serum extracellular vesicles reflects resistance to AR Axis-targeted therapy among CRPC patients. Cancer Genomics Proteom. 2023;20:456–68.

    Article  CAS  Google Scholar 

  46. Bhagirath D, Yang TL, Tabatabai ZL, Majid S, Dahiya R, Tanaka Y, et al. BRN4 is a novel driver of neuroendocrine differentiation in castration-resistant prostate cancer and is selectively released in extracellular vesicles with BRN2. Clin Cancer Res. 2019;25:6532–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Y, Xie N, Chen R, Lee AR, Lovnicki J, Morrison EA, et al. RNA splicing of the BHC80 gene contributes to neuroendocrine prostate cancer progression. Eur Urol. 2019;76:157–66.

    Article  CAS  PubMed  Google Scholar 

  48. Li Y, Zhang Q, Lovnicki J, Chen R, Fazli L, Wang Y, et al. SRRM4 gene expression correlates with neuroendocrine prostate cancer. Prostate. 2019;79:96–104.

    Article  CAS  PubMed  Google Scholar 

  49. Lovnicki J, Gan Y, Feng T, Li Y, Xie N, Ho CH, et al. LIN28B promotes the development of neuroendocrine prostate cancer. J Clin Invest. 2020;130:5338–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu LL, Xie N, Sun S, Plymate S, Mostaghel E, Dong X. Mechanisms of the androgen receptor splicing in prostate cancer cells. Oncogene. 2014;33:3140–50.

    Article  CAS  PubMed  Google Scholar 

  51. Li Y, Guo X, Xue G, Wang H, Wang Y, Wang W, et al. RNA splicing of the Abi1 Gene by MBNL1 contributes to macrophage-like phenotype modulation of vascular smooth muscle cell during atherogenesis. Cell Prolif. 2021;54:e13023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the National Nature Science Foundation of China (82170511 to YL and 82370495 to LZ) and National Nature Science Foundation of Shanghai City (20ZR1471800 to YL) and China postdoctoral science foundation (2022M712111 to YL) and National VTE Prevention and Control Research Fund Project Special Excellence Project (Y031 to LL).

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: Li Y, Zhang L, Dong X, Sha J, Acquisition of data: Li Y, Lv L, Ye M. Analysis and interpretation of data: Li Y, Lv L, Ye M, Sha J, Drafting the manuscript: Li Y, Zhang L, Dong X, Critical revision of the manuscript: Zhang L, Dong X. Statistically analysis: Li Y, Lv L, Ye M. Obtain funding: Li Y, Zhang L, Lv L. Administrative, technical or material support: Ning X, Ladan F, Wang Y, Wang W, Yang S, Ni Q, Chen J, Guo X, Zhao Y, Xue G.

Corresponding authors

Correspondence to Jianjun Sha, Xuesen Dong or Lan Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All procedures were approved by the research ethics committee of the Renji Hospital (LY2023-027-A). All patients included in this research provided written informed consent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lv, L., Ye, M. et al. PDIA2 has a dual function in promoting androgen deprivation therapy induced venous thrombosis events and castrate resistant prostate cancer progression. Oncogene (2024). https://doi.org/10.1038/s41388-024-03024-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03024-1

Search

Quick links