Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

USP26 promotes colorectal cancer tumorigenesis by restraining PRKN-mediated mitophagy

Abstract

Deubiquitinating enzymes (DUBs) are promising targets for cancer therapy because of their pivotal roles in various physiological and pathological processes. Among these, ubiquitin-specific peptidase 26 (USP26) is a protease with crucial regulatory functions. Our study sheds light on the upregulation of USP26 in colorectal cancer (CRC), in which its increased expression correlates with an unfavorable prognosis. Herein, we evidenced the role of USP26 in promoting CRC tumorigenesis in a parkin RBR E3 ubiquitin-protein ligase (PRKN) protein-dependent manner. Our investigation revealed that USP26 directly interacted with PRKN protein, facilitating its deubiquitination, and subsequently reducing its activity. Additionally, we identified the K129 site on PRKN as a specific target for USP26-mediated deubiquitination. Our research highlights that a K-to-R mutation at the site on PRKN diminishes its potential for activation and ability to mediate mitophagy. In summary, our findings underscore the significance of USP26-mediated deubiquitination in restraining the activation of the PRKN-mediated mitophagy pathway, ultimately driving CRC tumorigenesis. This study not only elucidated the multifaceted role of USP26 in CRC but also introduced a promising avenue for therapeutic exploration through the development of small molecule inhibitors targeting USP26. This strategy holds promise as a novel therapeutic approach for CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: USP26 is overexpressed in colon carcinoma.
Fig. 2: Inhibition of USP26 moderates CRC tumorigenesis in vivo and in vitro.
Fig. 3: USP26 depletion promotes the activation of mitophagy.
Fig. 4: USP26 directly interacts with and deubiquitinates PRKN.
Fig. 5: USP26 removes K27-linked ubiquitin conjugates from PRKN at K129.
Fig. 6: USP26-triggered tumorigenesis is mediated by PRKN.
Fig. 7: Expression of PRKN is negatively correlated with USP26 in CRC.

Similar content being viewed by others

Data availability

All the data and materials used in this study are available from the corresponding author upon request.

References

  1. Shaid S, Brandts CH, Serve H, Dikic I. Ubiquitination and selective autophagy. Cell Death Differ. 2013;20:21–30.

    Article  CAS  PubMed  Google Scholar 

  2. Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. ‘protein modifications: beyond the usual suspects’ review series. EMBO Rep. 2008;9:536–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Herrmann J, Lerman LO, Lerman A. Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res. 2007;100:1276–91.

    Article  CAS  PubMed  Google Scholar 

  4. Sun SC. Deubiquitylation and regulation of the immune response. Nat Rev Immunol. 2008;8:501–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu H, Sun SC. Ubiquitin signaling in immune responses. Cell Res. 2016;26:457–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tang J, Luo Y, Xiao L. USP26 promotes anaplastic thyroid cancer progression by stabilizing TAZ. Cell Death Dis. 2022;13:326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li L, Zhou H, Zhu R, Liu Z. USP26 promotes esophageal squamous cell carcinoma metastasis through stabilizing Snail. Cancer Lett. 2019;448:52–60.

    Article  CAS  PubMed  Google Scholar 

  8. Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 2007;462:245–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol. 2018;28:R170–R185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Porporato PE, Filigheddu N, Pedro JMB, Kroemer G, Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28:265–80.

    Article  CAS  PubMed  Google Scholar 

  11. Modica-Napolitano JS, Singh KK. Mitochondrial dysfunction in cancer. Mitochondrion. 2004;4:755–62.

    Article  CAS  PubMed  Google Scholar 

  12. Hsu CC, Tseng LM, Lee HC. Role of mitochondrial dysfunction in cancer progression. Exp Biol Med. 2016;241:1281–95.

    Article  CAS  Google Scholar 

  13. Li Y, Liang R, Zhang X, Wang J, Shan C, Liu S, et al. Copper chaperone for superoxide dismutase promotes breast cancer cell proliferation and migration via ROS-mediated MAPK/ERK signaling. Front Pharmacol. 2019;10:356.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12:9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Poole LP, Macleod KF. Mitophagy in tumorigenesis and metastasis. Cell Mol Life Sci. 2021;78:3817–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang T, Liu Q, Gao W, Sehgal SA, Wu H. The multifaceted regulation of mitophagy by endogenous metabolites. Autophagy. 2022;18:1216–39.

    Article  CAS  PubMed  Google Scholar 

  17. Saito S, Sirahama S, Matsushima M, Suzuki M, Sagae S, Kudo R, et al. Definition of a commonly deleted region in ovarian cancers to a 300-kb segment of chromosome 6q27. Cancer Res. 1996;56:5586–9.

    CAS  PubMed  Google Scholar 

  18. Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R, McAdams H, et al. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci USA. 2003;100:5956–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Denison SR, Wang F, Becker NA, Schüle B, Kock N, Phillips LA, et al. Alterations in the common fragile site gene Parkin in ovarian and other cancers. Oncogene. 2003;22:8370–8.

    Article  CAS  PubMed  Google Scholar 

  20. Picchio MC, Martin ES, Cesari R, Calin GA, Yendamuri S, Kuroki T, et al. Alterations of the tumor suppressor gene Parkin in non-small cell lung cancer. Clin Cancer Res. 2004;10:2720–4.

    Article  CAS  PubMed  Google Scholar 

  21. Liu B, Ruan J, Chen M, Li Z, Manjengwa G, Schlüter D, et al. Deubiquitinating enzymes (DUBs): decipher underlying basis of neurodegenerative diseases. Mol Psychiatry. 2022;27:259–68.

    Article  CAS  PubMed  Google Scholar 

  22. Yao RQ, Ren C, Xia ZF, Yao YM. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles. Autophagy. 2021;17:385–401.

    Article  CAS  PubMed  Google Scholar 

  23. Jeong YY, Jia N, Ganesan D, Cai Q. Broad activation of the PRKN pathway triggers synaptic failure by disrupting synaptic mitochondrial supply in early tauopathy. Autophagy. 2022;18:1472–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li W, Li F, Zhang X, Lin HK, Xu C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct Target Ther. 2021;6:422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang H, Yang L, Liu M, Luo J. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther. 2023;30:529–47.

    Article  CAS  PubMed  Google Scholar 

  26. Horn-Ghetko D, Krist DT, Prabu JR, Baek K, Mulder MPC, Klügel M, et al. Ubiquitin ligation to F-box protein targets by SCF-RBR E3-E3 super-assembly. Nature. 2021;590:671–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wan Y, Yan C, Gao H, Liu T. Small-molecule PROTACs: novel agents for cancer therapy. Future Med Chem. 2020;12:915–38.

    Article  CAS  PubMed  Google Scholar 

  28. Gao H, Sun X, Rao Y. PROTAC technology: opportunities and challenges. ACS Med Chem Lett. 2020;11:237–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harrigan JA, Jacq X, Martin NM, Jackson SP. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov. 2018;17:57–78.

    Article  CAS  PubMed  Google Scholar 

  30. Lu Y, Li Z, Zhang S, Zhang T, Liu Y, Zhang L. Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 2023;13:736–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamano K, Kikuchi R, Kojima W, Hayashida R, Koyano F, Kawawaki J. Critical role of mitochondrial ubiquitination and the OPTN-ATG9A axis in mitophagy. J Cell Biol. 2020;219:e201912144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jee SC, Cheong H. Autophagy/mitophagy regulated by ubiquitination: a promising pathway in cancer therapeutics. Cancers. 2023;15:1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsefou E, Ketteler R. Targeting deubiquitinating enzymes (DUBs) that regulate mitophagy via direct or indirect interaction with Parkin. Int J Mol Sci. 2022;23:12105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park GH, Park JH, Chung KC. Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson’s disease. BMB Rep. 2021;54:592–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, Serricchio M, Jauregui M, Shanbhag R, Stoltz T, Di Paolo CT, et al. Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy. 2015;11:595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun Y, Lu F, Yu X, Wang B, Chen J, Lu F, et al. Exogenous H(2)S promoted USP8 sulfhydration to regulate mitophagy in the hearts of db/db mice. Aging Dis. 2020;11:269–85.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature. 2014;510:370–5.

    Article  CAS  PubMed  Google Scholar 

  38. Niu K, Fang H, Chen Z, Zhu Y, Tan Q, Wei D, et al. USP33 deubiquitinates PRKN/parkin and antagonizes its role in mitophagy. Autophagy. 2020;16:724–34.

    Article  CAS  PubMed  Google Scholar 

  39. Lim KL, Chew KC, Tan JM, Wang C, Chung KK, Zhang Y, et al. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J Neurosci. 2005;25:2002–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Matsuda N, Kitami T, Suzuki T, Mizuno Y, Hattori N, Tanaka K. Diverse effects of pathogenic mutations of Parkin that catalyze multiple monoubiquitylation in vitro. J Biol Chem. 2006;281:3204–9.

    Article  CAS  PubMed  Google Scholar 

  41. Zhong L, Tan Y, Zhou A, Yu Q, Zhou J. RING finger ubiquitin-protein isopeptide ligase Nrdp1/FLRF regulates parkin stability and activity. J Biol Chem. 2005;280:9425–30.

    Article  CAS  PubMed  Google Scholar 

  42. Chastagner P, Israël A, Brou C. Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains. Embo Rep. 2006;7:1147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12:119–U70.

    Article  CAS  PubMed  Google Scholar 

  44. Ikeda H, Kerppola TK. Lysosomal localization of ubiquitinated Jun requires multiple determinants in a lysine-27-linked polyubiquitin conjugate. Mol Biol Cell. 2008;19:4588–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tan JM, Wong ES, Kirkpatrick DS, Pletnikova O, Ko HS, Tay SP, et al. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet. 2008;17:431–9.

    Article  CAS  PubMed  Google Scholar 

  46. Ben-Saadon R, Zaaroor D, Ziv T, Ciechanover A. The polycomb protein Ring1B generates self-atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity. Mol Cell. 2006;24:701–11.

    Article  CAS  PubMed  Google Scholar 

  47. Morris JR, Solomon E. BRCA1: BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet. 2004;13:807–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (No. 2022YFA1105303 GW) and NSFC (GW, Nos. 81974432, 81922053, and 82330084; JH, No. 82273254).

Author information

Authors and Affiliations

Authors

Contributions

QW, GW, and JH conceived and designed the experiments; QW, ZW, and SC conducted biochemical and cellular experiments. XS, SZ, and PL performed the animal experiments. LL, KL, AL, and CH generated the gene knock-out cell lines. YC and FH provided help for bioinformatics analysis. JH and GW gave suggestions for many experiments. QW, GW, and JH organized and analyzed the data and wrote the manuscript, which was edited by all authors.

Corresponding authors

Correspondence to Guihua Wang or Junbo Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Ethics Committee of Tongji Hospital (TJ-IRB20220723). The clinical specimens randomly used in this study were obtained from the Department of Gastrointestinal Surgery, Tongji Hospital. Demographic information, including age and sex, is presented in Table S2. Animal experiments were performed strictly following the Animal Study Guideline of Huazhong University of Science and Technology (TJH-202210034).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Wang, Z., Chen, S. et al. USP26 promotes colorectal cancer tumorigenesis by restraining PRKN-mediated mitophagy. Oncogene (2024). https://doi.org/10.1038/s41388-024-03009-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03009-0

Search

Quick links