Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasmalemma vesicle-associated protein promotes angiogenesis in cholangiocarcinoma via the DKK1/CKAP4/PI3K signaling pathway

Abstract

Cholangiocarcinoma (CCA) is aggressive and has poor clinical outcomes because of typically delayed diagnosis and a lack of effective non-surgical therapeutic options. Recent studies have shown that plasmalemma vesicle-associated protein (PLVAP) is related to angiogenesis in various tumors, and in vivo PLVAP targeting therapy has been proven effective against hepatocellular carcinoma and pancreatic cancer. The goal of this study was to determine the potential therapeutic utility of targeting PLVAP and thus angiogenesis in CCA and explore the underlying molecular mechanisms. We found that the PLVAP expression levels were significantly higher in CCA tissues when compared with matched adjacent non-tumor tissues obtained from a total of 90 CCA patients; higher expression levels of PLVAP were associated with shorter overall survival of patients. In addition, overexpression of PLVAP was associated with higher micro-vessel density in CCA tissues. In a PLVAP overexpressing CCA patient-derived xenograft model, a novel humanized anti-PLVAP antibody in combination with Gemcitabine plus Cisplatin was significantly inhibited tumor growth. Molecular analysis of CCA cells co-cultured with human umbilical vascular endothelial cells or human hepatic sinusoidal endothelial cells showed that Dickkopf-related protein 1 (DKK1) secreted by CCA cells activated the PI3K/Akt pathway after binding to its receptor, cytoskeleton-associated protein 4 (CKAP4), resulting in the upregulation of PLVAP. Thus, CCA cells increased the angiogenic potency of endothelial cells in a paracrine fashion. Consistently, patients bearing CKAP4 and PLVAP overexpressing tumors had a poor prognosis. In conclusion, the DKK1/CKAP4/PI3K/PLVAP pathway increases angiogenesis in CCA and is therefore a potential anti-angiogenic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PLVAP is an angiogenic marker and indicates poor prognosis in CCA patients.
Fig. 2: PLVAP is an anti-angiogenic target for CCA.
Fig. 3: CCA cells increase the angiogenic potential of endothelial cells (ECs) in a paracrine manner.
Fig. 4: CCA-secreted DKK1 is a key regulator of PLVAP expression and angiogenic potential of ECs.
Fig. 5: DKK1 binds to the CKAP4 receptor and up-regulates PLVAP expression by activating the PI3K/Akt pathway.
Fig. 6: High CKAP4 and PLVAP expression levels are associated with poor overall survival of CCA patients underwent surgical resection.

Similar content being viewed by others

References

  1. Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. Semin Liver Dis. 2004;24:115–25.

    Article  PubMed  Google Scholar 

  2. Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013;145:1215–29.

    Article  CAS  PubMed  Google Scholar 

  3. Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, et al. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13:261–80.

    Article  PubMed  Google Scholar 

  4. Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, et al. cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362:1273–81.

    Article  CAS  PubMed  Google Scholar 

  5. Yoshikawa D, Ojima H, Iwasaki M, Hiraoka N, Kosuge T, Kasai S, et al. Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br J Cancer. 2008;98:418–25.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Han C, Zhu H, Song K, Wu T. miR-101 inhibits cholangiocarcinoma angiogenesis through targeting vascular endothelial growth factor (VEGF). Am J Pathol. 2013;182:1629–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peng H, Zhang Q, Li J, Zhang N, Hua Y, Xu L, et al. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma. Oncotarget. 2016;7:17220–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. El-Khoueiry AB, Rankin C, Siegel AB, Iqbal S, Gong IY, Micetich KC, et al. S0941: a phase 2 SWOG study of sorafenib and erlotinib in patients with advanced gallbladder carcinoma or cholangiocarcinoma. Br J Cancer. 2014;110:882–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shroff RT, Yarchoan M, O’Connor A, Gallagher D, Zahurak ML, Rosner G, et al. The oral VEGF receptor tyrosine kinase inhibitor pazopanib in combination with the MEK inhibitor trametinib in advanced cholangiocarcinoma. Br J Cancer. 2017;116:1402–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ioannidou S, Deinhardt K, Miotla J, Bradley J, Cheung E, Samuelsson S, et al. An in vitro assay reveals a role for the diaphragm protein PV-1 in endothelial fenestra morphogenesis. Proc Natl Acad Sci USA. 2006;103:16770–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stan RV, Tse D, Deharvengt SJ, Smits NC, Xu Y, Luciano MR, et al. The diaphragms of fenestrated endothelia: gatekeepers of vascular permeability and blood composition. Dev Cell. 2012;23:1203–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rantakari P, Jappinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392–6.

    Article  CAS  PubMed  Google Scholar 

  13. Rantakari P, Auvinen K, Jappinen N, Kapraali M, Valtonen J, Karikoski M, et al. The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes. Nat Immunol. 2015;16:386–96.

    Article  CAS  PubMed  Google Scholar 

  14. Strickland LA, Jubb AM, Hongo JA, Zhong F, Burwick J, Fu L, et al. Plasmalemmal vesicle-associated protein (PLVAP) is expressed by tumour endothelium and is up-regulated by vascular endothelial growth factor-A (VEGF). J Pathol. 2005;206:466–75.

    Article  CAS  PubMed  Google Scholar 

  15. Tichauer KM, Deharvengt SJ, Samkoe KS, Gunn JR, Bosenberg MW, Turk MJ, et al. Tumor endothelial marker imaging in melanomas using dual-tracer fluorescence molecular imaging. Mol Imaging Biol. 2014;16:372–82.

  16. Wang YH, Cheng TY, Chen TY, Chang KM, Chuang VP, Kao KJ. Plasmalemmal Vesicle Associated Protein (PLVAP) as a therapeutic target for treatment of hepatocellular carcinoma. BMC Cancer. 2014;14:815.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Deharvengt SJ, Tse D, Sideleva O, McGarry C, Gunn JR, Longnecker DS, et al. PV1 down-regulation via shRNA inhibits the growth of pancreatic adenocarcinoma xenografts. J Cell Mol Med. 2012;16:2690–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, Patel YT, et al. Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype. Cancer cell. 2016;29:508–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene. 2006;25:7469–81.

    Article  CAS  PubMed  Google Scholar 

  20. Shinno N, Kimura H, Sada R, Takiguchi S, Mori M, Fumoto K, et al. Activation of the Dickkopf1-CKAP4 pathway is associated with poor prognosis of esophageal cancer and anti-CKAP4 antibody may be a new therapeutic drug. Oncogene. 2018;37:3471–84.

    Article  CAS  PubMed  Google Scholar 

  21. Marti P, Stein C, Blumer T, Abraham Y, Dill MT, Pikiolek M. et al.YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors.Hepatology (Baltimore. Md).2015;62:1497–510.

    Article  CAS  Google Scholar 

  22. Xu YF, Liu ZL, Pan C, Yang XQ, Ning SL, Liu HD, et al. HMGB1 correlates with angiogenesis and poor prognosis of perihilar cholangiocarcinoma via elevating VEGFR2 of vessel endothelium. Oncogene. 2019;38:868–80.

    Article  CAS  PubMed  Google Scholar 

  23. Kim JH, Yoon HK, Sung KB, Ko GY, Gwon DI, Shin JH, et al. Transcatheter arterial chemoembolization or chemoinfusion for unresectable intrahepatic cholangiocarcinoma: clinical efficacy and factors influencing outcomes. Cancer. 2008;113:1614–22.

    Article  PubMed  Google Scholar 

  24. Hall C, Ehrlich L, Venter J, O’Brien A, White T, Zhou T, et al. Inhibition of the apelin/apelin receptor axis decreases cholangiocarcinoma growth. Cancer Lett. 2017;386:179–88.

    Article  CAS  PubMed  Google Scholar 

  25. Kennedy L, Hargrove L, Demieville J, Karstens W, Jones H, DeMorrow S, et al. Blocking H1/H2 histamine receptors inhibits damage/fibrosis in Mdr2(-/-) mice and human cholangiocarcinoma tumorigenesis. Hepatol (Baltim, Md). 2018;68:1042–56.

    Article  CAS  Google Scholar 

  26. Shirota T, Ojima H, Hiraoka N, Shimada K, Rokutan H, Arai Y, et al. Heat Shock Protein 90 Is a Potential Therapeutic Target in Cholangiocarcinoma. Mol Cancer Ther. 2015;14:1985–93.

    Article  CAS  PubMed  Google Scholar 

  27. Bengala C, Bertolini F, Malavasi N, Boni C, Aitini E, Dealis C, et al. Sorafenib in patients with advanced biliary tract carcinoma: a phase II trial. Br J Cancer. 2010;102:68–72.

    Article  CAS  PubMed  Google Scholar 

  28. El-Khoueiry AB, Rankin CJ, Ben-Josef E, Lenz HJ, Gold PJ, Hamilton RD, et al. SWOG 0514: a phase II study of sorafenib in patients with unresectable or metastatic gallbladder carcinoma and cholangiocarcinoma. Investig N Drugs. 2012;30:1646–51.

    Article  CAS  Google Scholar 

  29. Brechon M, Dior M, Dreanic J, Brieau B, Guillaumot MA, Brezault C, et al. Addition of an anti-angiogenic therapy, bevacizumab, to gemcitabine plus oxaliplatin improves survival in advanced biliary tract cancers. Investig N Drugs. 2018;36:156–62.

    Article  CAS  Google Scholar 

  30. Matsuyama M, Ishii H, Furuse J, Ohkawa S, Maguchi H, Mizuno N, et al. Phase II trial of combination therapy of gemcitabine plus anti-angiogenic vaccination of elpamotide in patients with advanced or recurrent biliary tract cancer. Investig N Drugs. 2015;33:490–5.

    Article  CAS  Google Scholar 

  31. Mittal K, Ebos J, Rini B. Angiogenesis and the tumor microenvironment: vascular endothelial growth factor and beyond. Semin Oncol. 2014;41:235–51.

    Article  CAS  PubMed  Google Scholar 

  32. Mobius C, Demuth C, Aigner T, Wiedmann M, Wittekind C, Mossner J, et al. Evaluation of VEGF A expression and microvascular density as prognostic factors in extrahepatic cholangiocarcinoma. Eur J Surg Oncol. 2007;33:1025–9.

    Article  CAS  PubMed  Google Scholar 

  33. Shirabe K, Shimada M, Tsujita E, Aishima S, Maehara S, Tanaka S, et al. Prognostic factors in node-negative intrahepatic cholangiocarcinoma with special reference to angiogenesis. Am J Surg. 2004;187:538–42.

    Article  PubMed  Google Scholar 

  34. Cassidy JW, Caldas C, Bruna A. Maintaining Tumor Heterogeneity in Patient-Derived Tumor Xenografts. Cancer Res. 2015;75:2963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aparicio S, Hidalgo M, Kung AL. Examining the utility of patient-derived xenograft mouse models. Nat Rev Cancer. 2015;15:311–6.

    Article  CAS  PubMed  Google Scholar 

  36. Cavalloni G, Peraldo-Neia C, Sassi F, Chiorino G, Sarotto I, Aglietta M, et al. Establishment of a patient-derived intrahepatic cholangiocarcinoma xenograft model with KRAS mutation. BMC Cancer. 2016;16:90.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shi RY, Yang XR, Shen QJ, Yang LX, Xu Y, Qiu SJ, et al. High expression of Dickkopf-related protein 1 is related to lymphatic metastasis and indicates poor prognosis in intrahepatic cholangiocarcinoma patients after surgery. Cancer 2013;119:993–1003.

    Article  CAS  PubMed  Google Scholar 

  38. Shi XD, Yu XH, Wu WR, Xu XL, Wang JY, Xu LB, et al. Dickkopf-1 expression is associated with tumorigenity and lymphatic metastasis in human hilar cholangiocarcinoma. Oncotarget. 2016;7:70378–87.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Hanifi-Moghaddam P, Hanekamp EE, Kloosterboer HJ, Franken P, Veldscholte J, et al. Progesterone inhibition of Wnt/beta-catenin signaling in normal endometrium and endometrial cancer. Clin Cancer Res. 2009;15:5784–93.

    Article  CAS  PubMed  Google Scholar 

  40. Klein D, Demory A, Peyre F, Kroll J, Augustin HG, Helfrich W, et al. Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway. Hepatol (Baltim, Md). 2008;47:1018–31.

    Article  CAS  Google Scholar 

  41. Paes KT, Wang E, Henze K, Vogel P, Read R, Suwanichkul A, et al. Frizzled 4 is required for retinal angiogenesis and maintenance of the blood-retina barrier. Investig Ophthalmol Vis Sci. 2011;52:6452–61.

    Article  CAS  Google Scholar 

  42. Kimura H, Yamamoto H, Harada T, Fumoto K, Osugi Y, Sada R, et al. CKAP4, a DKK1 receptor, is a biomarker in exosomes derived from pancreatic cancer and a molecular target for therapy. Clin Cancer Res. 2019;25:1936–47.

    Article  CAS  PubMed  Google Scholar 

  43. Kimura H, Fumoto K, Shojima K, Nojima S, Osugi Y, Tomihara H, et al. CKAP4 is a Dickkopf1 receptor and is involved in tumor progression. J Clin Investig. 2016;126:2689–705.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang Y, Ding X, Wang S, Moser CD, Shaleh HM, Mohamed EA, et al. Antitumor effect of FGFR inhibitors on a novel cholangiocarcinoma patient derived xenograft mouse model endogenously expressing an FGFR2-CCDC6 fusion protein. Cancer Lett. 2016;380:163–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jungang Zhao, Yifan Tong, Ziyan Chen, and Mingxun Wang for discussing the paper. We also appreciate Sina Zhang for her help with statistical analysis and bioinformatics analysis. We are deeply thankful to Prof Lewis R.Roberts (Mayo Clinic, USA) for valuable advice and discussions on the paper. This work was supported by the National Natural Science Foundation of China (Grant No. 81201953, 81772628, 82072685 to GC and 81703310 to YW); the Joint Projects of National Health Council and Zhejiang Province (No.WKJ-ZJ-1706 to GC); the Natural Science Foundation of Zhejiang Province (No.LY17H160047 to GC); the Public Projects of Zhejiang Province (No.2016C37127 to ZPY and 2018C37114 to YW).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: GC, ZPY. Development of methodology: GC, YW, YHZ. Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): GC, XZX, HTY, LYY, LJW, QDZ, JJL, XWD, ZY. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): GC, YW, XZX, HTY, LYY, LJW, XWD, ZY, TD. Writing, review, and revision of the paper: GC, YW, ZPY, TD. Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): GC, XZX, HTY, LJW, QDZ, JJL, XWD, ZY, YHZ. Study supervision: GC, YW.

Corresponding authors

Correspondence to Yi Wang or Gang Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yu, H., Xie, X. et al. Plasmalemma vesicle-associated protein promotes angiogenesis in cholangiocarcinoma via the DKK1/CKAP4/PI3K signaling pathway. Oncogene 40, 4324–4337 (2021). https://doi.org/10.1038/s41388-021-01844-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01844-z

Search

Quick links