Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

HIF1α-mediated transactivation of WTAP promotes AML cell proliferation via m6A-dependent stabilization of KDM4B mRNA

Abstract

Hypoxia inducible factor 1α (HIF1α) is abnormally overexpressed in t(8;21) acute myeloid leukemia (AML) and functions as an oncogene through transactivating DNA methyltransferase 3 alpha leading to DNA hypermethylation. However, it remains unclear whether HIF1α influences RNA N6-methyladenosine (m6A) methyltransferases. Here, we show that HIF1α promotes the expression of Wilms tumor 1-associated protein (WTAP), a main component of the m6A methyltransferase complex, markedly alters the transcriptome-wide m6A distribution and enhances cell proliferation in t(8;21) AML. In agreement with this, WTAP is overexpressed and predicts poor prognosis in t(8;21) AML patients. Moreover, WTAP knockdown inhibits growth, and induces apoptosis and differentiation of leukemia cells. Mechanistically, HIF1α transactivates WTAP gene expression by directly binding to the hypoxia-response element of its promoter region. Pharmacological or genetic intervention in the HIF1α-WTAP axis results in the reduction of m6A level on lysine demethylase 4B (KDM4B) transcripts and increased its degradation, correlated with lower expression of KDM4B and higher trimethylation levels of histone H3 on lysine 9. KDM4B knockdown inhibits leukemia cell growth in vitro and in mice. Thus, HIF1α-mediated WTAP high expression enhances the malignant behavior of leukemia cells and drives a crosstalk between m6A RNA methylation and histone methylation through monitoring m6A-dependant KDM4B translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High WTAP expression levels are positively correlates with HIF1α expression and indicate inferior prognosis in t(8;21) AML.
Fig. 2: Silencing of WTAP expression inhibits proliferation ability of t(8;21) AML cells.
Fig. 3: HIF1α promotes WTAP expression at the transcriptional level by binding directly to the WTAP promoter.
Fig. 4: HIF1α induces KDM4B gene high expression through WTAP-mediated m6A methylation modification.
Fig. 5: Silencing of WTAP decreases m6A methylation of expression levels of KDM4B.
Fig. 6: High KDM4B expression levels are positively correlates with HIF1α/WTAP expression and indicate inferior prognosis in t(8;21) AML, and silencing of KDM4B expression inhibits leukemia cell proliferation ability.
Fig. 7: HIF1α-WTAP axis catalyzes the demethylation of trimethylated Lys9 in histone H3 (H3K9me3) by inducing KDM4B expression.

Similar content being viewed by others

Data availability

The m6A sequencing data have been deposited in Gene Expression Omnibus (GEO) with the accession code GSE168778, GSE200605 and GSE214225.

References

  1. Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. Diagnosis and management of AML in adults: 2022 ELN recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140:1345–77.

    Article  PubMed  Google Scholar 

  2. Al-Harbi S, Aljurf M, Mohty M, Almohareb F, Ahmed SOA. An update on the molecular pathogenesis and potential therapeutic targeting of AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1. Blood Adv. 2020;4:229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marcucci G, Mrózek K, Ruppert AS, Maharry K, Kolitz JE, Moore JO, et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B study. J Clin Oncol. 2005;23:5705–17.

    Article  PubMed  Google Scholar 

  5. Higuchi M, O’Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell. 2002;1:63–74.

    Article  CAS  PubMed  Google Scholar 

  6. Schessl C, Rawat VP, Cusan M, Deshpande A, Kohl TM, Rosten PM, et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest. 2005;115:2159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yan M, Kanbe E, Peterson LF, Boyapati A, Miao Y, Wang Y, et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med. 2006;12:945–9.

    Article  CAS  PubMed  Google Scholar 

  8. Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L, et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell. 2007;12:457–66.

    Article  CAS  PubMed  Google Scholar 

  9. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129:465–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Liu Y, Malek SN, Zheng P, Liu Y. Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell. 2011;8:399–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao XN, Yan F, Lin J, Gao L, Lu XL, Wei SC, et al. AML1/ETO cooperates with HIF1α to promote leukemogenesis through DNMT3a transactivation. Leukemia. 2015;29:1730–40.

    Article  CAS  PubMed  Google Scholar 

  12. Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millán-Zambrano G, Robson SC, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature. 2017;552:126–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23:1369–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weng H, Huang H, Wu H, Qin X, Zhao BS, Dong L, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification. Cell Stem Cell. 2018;22:191–205.

    Article  CAS  PubMed  Google Scholar 

  15. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-Methyladenosine RNA demethylase. Cancer Cell. 2017;31:127–41.

    Article  PubMed  Google Scholar 

  16. Paris J, Morgan M, Campos J, Spencer GJ, Shmakova A, Ivanova I, et al. Targeting the RNA m6A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell. 2019;25:137–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161:1388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. YTHDF2 is a potential target of AML1/ETO-HIF1α loop-mediated cell proliferation in t(8;21) AML. Oncogene. 2021;40:3786–98.

    Article  PubMed  Google Scholar 

  19. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350:1617–28.

    Article  CAS  PubMed  Google Scholar 

  20. de Jonge HJ, Valk PJ, Veeger NJ, ter Elst A, den Boer ML, Cloos J, et al. High VEGFC expression is associated with unique gene expression profiles and predicts adverse prognosis in pediatric and adult acute myeloid leukemia. Blood. 2010;116:1747–54.

    Article  PubMed  Google Scholar 

  21. Kharas MG, Lengner CJ, Al-Shahrour F, Bullinger L, Ball B, Zaidi S, et al. Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nat Med. 2010;16:903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuan Y, Hilliard G, Ferguson T, Millhorn DE. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha. J Biol Chem. 2003;278:15911–6.

    Article  CAS  PubMed  Google Scholar 

  23. Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A, et al. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res. 2005;65:9047–55.

    Article  CAS  PubMed  Google Scholar 

  24. Guo H, Ci X, Ahmed M, Hua JT, Soares F, Lin D, et al. ONECUT2 is a driver of neuroendocrine prostate cancer. Nat Commun. 2019;10:278.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shao YL, Chen Z, Wang LL, Liu DH, Gao XN. The relationship between HIF1α and WTAP expression level in t(8;21) acute myeloid leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2021;29:1424–8.

    PubMed  Google Scholar 

  26. Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P. The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem. 2008;283:36542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, Schofield CJ, et al. Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J. 2008;416:387–94.

    Article  CAS  PubMed  Google Scholar 

  28. Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS, et al. Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci USA. 2009;106:4260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramachandran S, Ient J, Göttgens EL, Krieg AJ, Hammond EM. Epigenetic therapy for solid tumors: highlighting the impact of tumor hypoxia. Genes (Basel). 2015;6:935–56.

    Article  CAS  PubMed  Google Scholar 

  30. Wilson C, Krieg AJ. KDM4B: a nail for every hammer? Genes (Basel). 2019;10:134.

    Article  CAS  PubMed  Google Scholar 

  31. Ueda T, Kanai A, Komuro A, Amano H, Ota K, Honda M, et al. KDM4B promotes acute myeloid leukemia associated with AML1-ETO by regulating chromatin accessibility. FASEB Bioadv. 2021;3:1020–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Horiuchi K, Umetani M, Minami T, Okayama H, Takada S, Yamamoto M, et al. Wilms’ tumor 1-associating protein regulates G2/M transition through stabilization of cyclin A2 mRNA. Proc Natl Acad Sci USA. 2006;103:17278–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Horiuchi K, Umetani M, Minami T, Okayama H, Takada S, Yamamoto M, et al. WTAP is a novel oncogenic protein in acute myeloid leukemia. Leukemia. 2014;28:1171–4.

    Article  Google Scholar 

  34. Jin DI, Lee SW, Han ME, Kim HJ, Seo SA, Hur GY, et al. Expression and roles of Wilms’ tumor 1-associating protein in glioblastoma. Cancer Sci. 2012;103:2102–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xie W, Liu N, Wang X, Wei L, Xie W, Sheng X. Wilms’ tumor 1-associated protein contributes to chemo-resistance to cisplatin through the Wnt/β-catenin pathway in endometrial cancer. Front Oncol. 2021;11:598344.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen Y, Peng C, Chen J, Chen D, Yang B, He B, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer. 2019;18:127.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen Y, Peng C, Chen J, Chen D, Yang B, He B, et al. WTAP-mediated m6A modification of lncRNA DIAPH1-AS1 enhances its stability to facilitate nasopharyngeal carcinoma growth and metastasis. Cell Death Differ. 2022;29:1137–51.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Res. 2018;28:507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hillringhaus L, Yue WW, Rose NR, Ng SS, Gileadi C, Loenarz C, et al. Structural and evolutionary basis for the dual substrate selectivity of human KDM4 histone demethylase family. J Biol Chem. 2011;286:41616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kan RL, Chen J, Sallam T. Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation. Trends Genet. 2022;38:182–93.

    Article  CAS  PubMed  Google Scholar 

  41. Liu J, Dou X, Chen C, Chen C, Liu C, Xu MM, et al. N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science. 2020;367:580–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu W, Li J, He C, Wen J, Ma H, Rong B, et al. METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature. 2021;591:317–21.

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y, Li Y, Yue M, Wang J, Kumar S, Wechsler-Reya RJ, et al. N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat Neurosci. 2018;21:195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu C, Chen W, He J, Jin S, Liu Y, Yi Y, et al. Interplay of m6A and H3K27 trimethylation restrains inflammation during bacterial infection. Sci Adv. 2020;6:eaba0647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Agger K, Miyagi S, Pedersen MT, Kooistra SM, Johansen JV, Helin K. Jmjd2/Kdm4 demethylases are required for expression of Il3ra and survival of acute myeloid leukemia cells. Genes Dev. 2016;30:1278–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding

This work was supported by research grants from the National Natural Science Foundation of China (82070149 [XNG], 81870109 [XNG] and 82030076 [LY]) and the Natural Science Foundation of Beijing Municipality (7202191 [XNG]).

Author information

Authors and Affiliations

Authors

Contributions

XNG conceived ideas and designed the experiments; YLS, YQL, MYL, LLW, and HSZ performed the experiments; LLW, LY, DHL, and JL critically reviewed the paper; YLS, YQL, and XNG carried out statistical analysis; JL and XNG interpreted data and wrote the paper. All authors vouch for the completeness and accuracy of the data and analysis.

Corresponding authors

Correspondence to Ji Lin or Xiao-Ning Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, YL., Li, YQ., Li, MY. et al. HIF1α-mediated transactivation of WTAP promotes AML cell proliferation via m6A-dependent stabilization of KDM4B mRNA. Leukemia 37, 1254–1267 (2023). https://doi.org/10.1038/s41375-023-01904-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-01904-1

This article is cited by

Search

Quick links