Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

KDM6 demethylases integrate DNA repair gene regulation and loss of KDM6A sensitizes human acute myeloid leukemia to PARP and BCL2 inhibition

Abstract

Acute myeloid leukemia (AML) is a heterogeneous, aggressive malignancy with dismal prognosis and with limited availability of targeted therapies. Epigenetic deregulation contributes to AML pathogenesis. KDM6 proteins are histone-3-lysine-27-demethylases that play context-dependent roles in AML. We inform that KDM6-demethylase function critically regulates DNA-damage-repair-(DDR) gene expression in AML. Mechanistically, KDM6 expression is regulated by genotoxic stress, with deficiency of KDM6A-(UTX) and KDM6B-(JMJD3) impairing DDR transcriptional activation and compromising repair potential. Acquired KDM6A loss-of-function mutations are implicated in chemoresistance, although a significant percentage of relapsed-AML has upregulated KDM6A. Olaparib treatment reduced engraftment of KDM6A-mutant-AML-patient-derived xenografts, highlighting synthetic lethality using Poly-(ADP-ribose)-polymerase-(PARP)-inhibition. Crucially, a higher KDM6A expression is correlated with venetoclax tolerance. Loss of KDM6A increased mitochondrial activity, BCL2 expression, and sensitized AML cells to venetoclax. Additionally, BCL2A1 associates with venetoclax resistance, and KDM6A loss was accompanied with a downregulated BCL2A1. Corroborating these results, dual targeting of PARP and BCL2 was superior to PARP or BCL2 inhibitor monotherapy in inducing AML apoptosis, and primary AML cells carrying KDM6A-domain mutations were even more sensitive to the combination. Together, our study illustrates a mechanistic rationale in support of a novel combination therapy for AML based on subtype-heterogeneity, and establishes KDM6A as a molecular regulator for determining therapeutic efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: KDM6 demethylases associate with DNA repair gene expression in AML.
Fig. 2: Loss of KDM6 in AML cells impairs DDR gene expression and double-stranded break (DSB) repair.
Fig. 3: KDM6A regulates chromatin architecture at DDR loci.
Fig. 4: KDM6A deficiency sensitizes AML to PARP inhibition.
Fig. 5: KDM6A associates with BCL2 and BCL2A1 expression.
Fig. 6: Attenuation of KDM6 increases AML susceptibility to BCL2 blockade.
Fig. 7: KDM6A-domain mutant primary AML cells are even more sensitive to combination of PARP and BCL2 blockade.

Similar content being viewed by others

Data availability

RNA-seq and ATAC-seq datasets are deposited in the Gene Expression Omnibus (GEO) with an accession number GSE223610.

References

  1. Tran N, Broun A, Ge K. Lysine demethylase KDM6A in differentiation, development, and cancer. Mol Cell Biol. 2020;40:e00341–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Yu SH, Zhu KY, Chen J, Liu XZ, Xu PF, Zhang W, et al. JMJD3 facilitates C/EBPbeta-centered transcriptional program to exert oncorepressor activity in AML. Nat Commun. 2018;9:3369.

    PubMed  PubMed Central  Google Scholar 

  3. Ohguchi H, Harada T, Sagawa M, Kikuchi S, Tai YT, Richardson PG, et al. KDM6B modulates MAPK pathway mediating multiple myeloma cell growth and survival. Leukemia. 2017;31:2661–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Boila LD, Chatterjee SS, Banerjee D, Sengupta A. KDM6 and KDM4 histone lysine demethylases emerge as molecular therapeutic targets in human acute myeloid leukemia. Exp Hematol. 2018;58:44–51.e7.

    CAS  PubMed  Google Scholar 

  5. Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 2007;449:689–94.

    CAS  PubMed  Google Scholar 

  6. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci USA. 2007;104:18439–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sen GL, Webster DE, Barragan DI, Chang HY, Khavari PA. Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev. 2008;22:1865–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Stief SM, Hanneforth AL, Weser S, Mattes R, Carlet M, Liu WH, et al. Loss of KDM6A confers drug resistance in acute myeloid leukemia. Leukemia. 2020;34:50–62.

    PubMed  Google Scholar 

  9. Gozdecka M, Meduri E, Mazan M, Tzelepis K, Dudek M, Knights AJ, et al. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat Genet. 2018;50:883–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Greif PA, Hartmann L, Vosberg S, Stief SM, Mattes R, Hellmann I, et al. Evolution of cytogenetically normal acute myeloid leukemia during therapy and relapse: an exome sequencing study of 50 patients. Clin Cancer Res. 2018;24:1716–26.

    CAS  PubMed  Google Scholar 

  11. Biswas M, Chatterjee SS, Boila LD, Chakraborty S, Banerjee D, Sengupta A. MBD3/NuRD loss participates with KDM6A program to promote DOCK5/8 expression and Rac GTPase activation in human acute myeloid leukemia. FASEB J. 2019;33:5268–86.

    CAS  PubMed  Google Scholar 

  12. Li Y, Zhang M, Sheng M, Zhang P, Chen Z, Xing W, et al. Therapeutic potential of GSK-J4, a histone demethylase KDM6B/JMJD3 inhibitor, for acute myeloid leukemia. J Cancer Res Clin Oncol. 2018;144:1065–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sera Y, Nakata Y, Ueda T, Yamasaki N, Koide S, Kobayashi H, et al. UTX maintains functional integrity of murine hematopoietic system by globally regulating aging-associated genes. Blood. 2021;137:908–22.

  14. Shi B, Li W, Song Y, Wang Z, Ju R, Ulman A, et al. UTX condensation underlies its tumour-suppressive activity. Nature. 2021;597:726–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei Y, Zheng H, Bao N, Jiang S, Bueso-Ramos CE, Khoury J, et al. KDM6B overexpression activates innate immune signaling and impairs hematopoiesis in mice. Blood Adv. 2018;2:2491–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mallaney C, Ostrander EL, Celik H, Kramer AC, Martens A, Kothari A, et al. Kdm6b regulates context-dependent hematopoietic stem cell self-renewal and leukemogenesis. Leukemia. 2019;33:2506–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei Y, Chen R, Dimicoli S, Bueso-Ramos C, Neuberg D, Pierce S, et al. Global H3K4me3 genome mapping reveals alterations of innate immunity signaling and overexpression of JMJD3 in human myelodysplastic syndrome CD34+ cells. Leukemia. 2013;27:2177–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen S, Ma J, Wu F, Xiong LJ, Ma H, Xu W, et al. The histone H3 Lys 27 demethylase JMJD3 regulates gene expression by impacting transcriptional elongation. Genes Dev. 2012;26:1364–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ntziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S, Xu L, et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature. 2014;514:513–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Van der Meulen J, Sanghvi V, Mavrakis K, Durinck K, Fang F, Matthijssens F, et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood. 2015;125:13–21.

    PubMed  PubMed Central  Google Scholar 

  21. Benyoucef A, Palii CG, Wang C, Porter CJ, Chu A, Dai F, et al. UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia. Genes Dev. 2016;30:508–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Santos MA, Faryabi RB, Ergen AV, Day AM, Malhowski A, Canela A, et al. DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier. Nature. 2014;514:107–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20:698–714.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377:523–33.

    CAS  PubMed  Google Scholar 

  25. Esposito MT, Zhao L, Fung TK, Rane JK, Wilson A, Martin N, et al. Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. Nat Med. 2015;21:1481–90.

    CAS  PubMed  Google Scholar 

  26. Maifrede S, Le BV, Nieborowska-Skorska M, Golovine K, Sullivan-Reed K, Dunuwille WMB, et al. TET2 and DNMT3A mutations exert divergent effects on DNA repair and sensitivity of leukemia cells to PARP inhibitors. Cancer Res. 2021;81:5089–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dhar SS, Lee SH, Chen K, Zhu G, Oh W, Allton K, et al. An essential role for UTX in resolution and activation of bivalent promoters. Nucleic Acids Res. 2016;44:3659–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rath BH, Waung I, Camphausen K, Tofilon PJ. Inhibition of the histone H3K27 demethylase UTX enhances tumor cell radiosensitivity. Mol Cancer Ther. 2018;17:1070–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zipin-Roitman A, Aqaqe N, Yassin M, Biechonski S, Amar M, van Delft MF, et al. SMYD2 lysine methyltransferase regulates leukemia cell growth and regeneration after genotoxic stress. Oncotarget. 2017;8:16712–27.

    PubMed  PubMed Central  Google Scholar 

  30. Aqaqe N, Yassin M, Yassin AA, Ershaid N, Katz-Even C, Zipin-Roitman A, et al. An ERG enhancer-based reporter identifies leukemia cells with elevated leukemogenic potential driven by ERG-USP9X feed-forward regulation. Cancer Res. 2019;79:3862–76.

    CAS  PubMed  Google Scholar 

  31. Warner JK, Wang JC, Takenaka K, Doulatov S, McKenzie JL, Harrington L, et al. Direct evidence for cooperating genetic events in the leukemic transformation of normal human hematopoietic cells. Leukemia. 2005;19:1794–805.

    CAS  PubMed  Google Scholar 

  32. McDermott SP, Eppert K, Notta F, Isaac M, Datti A, Al-Awar R, et al. A small molecule screening strategy with validation on human leukemia stem cells uncovers the therapeutic efficacy of kinetin riboside. Blood. 2012;119:1200–7.

    CAS  PubMed  Google Scholar 

  33. Boila LD, Sengupta A. Evolving insights on histone methylome regulation in human acute myeloid leukemia pathogenesis and targeted therapy. Exp Hematol. 2020;92:19–31.

    CAS  PubMed  Google Scholar 

  34. Chatterjee SS, Biswas M, Boila LD, Banerjee D, Sengupta A. SMARCB1 deficiency integrates epigenetic signals to oncogenic gene expression program maintenance in human acute myeloid leukemia. Mol Cancer Res. 2018;16:791–804.

    CAS  PubMed  Google Scholar 

  35. DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. DiNardo CD, Pratz KW, Letai A, Jonas BA, Wei AH, Thirman M, et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncol. 2018;19:216–28.

    CAS  PubMed  Google Scholar 

  37. Zeng AGX, Bansal S, Jin L, Mitchell A, Chen WC, Abbas HA, et al. A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia. Nat Med. 2022;28:1212–23.

    CAS  PubMed  Google Scholar 

  38. Pei S, Pollyea DA, Gustafson A, Stevens BM, Minhajuddin M, Fu R, et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia. Cancer Discov. 2020;10:536–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bose P, Gandhi V, Konopleva M. Pathways and mechanisms of venetoclax resistance. Leuk Lymphoma. 2017;58:1–17.

    PubMed  Google Scholar 

  40. Zhang H, Nakauchi Y, Kohnke T, Stafford M, Bottomly D, Thomas R, et al. Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. Nat Cancer. 2020;1:826–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Punnoose EA, Leverson JD, Peale F, Boghaert ER, Belmont LD, Tan N, et al. Expression profile of BCL-2, BCL-XL, and MCL-1 predicts pharmacological response to the BCL-2 selective antagonist venetoclax in multiple myeloma models. Mol Cancer Ther. 2016;15:1132–44.

    CAS  PubMed  Google Scholar 

  42. Lochmann TL, Powell KM, Ham J, Floros KV, Heisey DAR, Kurupi RIJ, et al. Targeted inhibition of histone H3K27 demethylation is effective in high-risk neuroblastoma. Sci Transl Med. 2018;10:eaao4680.

    PubMed  PubMed Central  Google Scholar 

  43. Pollyea DA, Amaya M, Strati P, Konopleva MY. Venetoclax for AML: changing the treatment paradigm. Blood Adv. 2019;3:4326–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Panina SB, Pei J, Baran N, Konopleva M, Kirienko NV. Utilizing synergistic potential of mitochondria-targeting drugs for leukemia therapy. Front Oncol. 2020;10:435.

    PubMed  PubMed Central  Google Scholar 

  45. Han L, Zhang Q, Dail M, Shi C, Cavazos A, Ruvolo VR, et al. Concomitant targeting of BCL2 with venetoclax and MAPK signaling with cobimetinib in acute myeloid leukemia models. Haematologica. 2020;105:697–707.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wei AH, Strickland SA Jr, Hou JZ, Fiedler W, Lin TL, Walter RB, et al. Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J Clin Oncol. 2019;37:1277–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jacoby MA, De Jesus Pizarro RE, Shao J, Koboldt DC, Fulton RS, Zhou G, et al. The DNA double-strand break response is abnormal in myeloblasts from patients with therapy-related acute myeloid leukemia. Leukemia. 2014;28:1242–51.

    CAS  PubMed  Google Scholar 

  48. Hofstetter C, Kampka JM, Huppertz S, Weber H, Schlosser A, Muller AM, et al. Inhibition of KDM6 activity during murine ESC differentiation induces DNA damage. J Cell Sci. 2016;129:788–803.

    CAS  PubMed  Google Scholar 

  49. Katagi H, Louis N, Unruh D, Sasaki T, He X, Zhang A, et al. Radiosensitization by histone H3 demethylase inhibition in diffuse intrinsic pontine glioma. Clin Cancer Res. 2019;25:5572–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee HS, Park JH, Kim SJ, Kwon SJ, Kwon J. A cooperative activation loop among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-strand break repair. EMBO J. 2010;29:1434–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. de Castro RO, Previato L, Goitea V, Felberg A, Guiraldelli MF, Filiberti A, et al. The chromatin-remodeling subunit Baf200 promotes homology-directed DNA repair and regulates distinct chromatin-remodeling complexes. J Biol Chem. 2017;292:8459–71.

    PubMed  PubMed Central  Google Scholar 

  52. Milyavsky M, Gan OI, Trottier M, Komosa M, Tabach O, Notta F, et al. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell. 2010;7:186–97.

    CAS  PubMed  Google Scholar 

  53. Biechonski S, Olender L, Zipin-Roitman A, Yassin M, Aqaqe N, Marcu-Malina V, et al. Attenuated DNA damage responses and increased apoptosis characterize human hematopoietic stem cells exposed to irradiation. Sci Rep. 2018;8:6071.

    PubMed  PubMed Central  Google Scholar 

  54. Zhao L, So CWE. PARPi potentiates with current conventional therapy in MLL leukemia. Cell Cycle. 2017;16:1861–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Maifrede S, Martinez E, Nieborowska-Skorska M, Di Marcantonio D, Hulse M, Le BV, et al. MLL-AF9 leukemias are sensitive to PARP1 inhibitors combined with cytotoxic drugs. Blood Adv. 2017;1:1467–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kendziorra E, Ahlborn K, Spitzner M, Rave-Frank M, Emons G, Gaedcke J, et al. Silencing of the Wnt transcription factor TCF4 sensitizes colorectal cancer cells to (chemo-) radiotherapy. Carcinogenesis. 2011;32:1824–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Monteiro LJ, Khongkow P, Kongsema M, Morris JR, Man C, Weekes D, et al. The forkhead box M1 protein regulates BRIP1 expression and DNA damage repair in epirubicin treatment. Oncogene. 2013;32:4634–45.

    CAS  PubMed  Google Scholar 

  58. Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33:299–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sallmyr A, Fan J, Datta K, Kim KT, Grosu D, Shapiro P, et al. Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood. 2008;111:3173–82.

    CAS  PubMed  Google Scholar 

  60. Maifrede S, Nieborowska-Skorska M, Sullivan-Reed K, Dasgupta Y, Podszywalow-Bartnicka P, Le BV, et al. Tyrosine kinase inhibitor-induced defects in DNA repair sensitize FLT3(ITD)-positive leukemia cells to PARP1 inhibitors. Blood. 2018;132:67–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Guan Y, Tiwari AD, Phillips JG, Hasipek M, Grabowski DR, Pagliuca S, et al. A Therapeutic Strategy for Preferential Targeting of TET2 Mutant and TET-dioxygenase Deficient Cells in Myeloid Neoplasms. Blood Cancer Discov. 2021;2:146–61.

    CAS  PubMed  Google Scholar 

  62. Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE, et al. Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell. 2017;20:233–46.e7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Kristian Helin (Addgene# 24168), Kai Ge (Addgene# 40619), Didier Trono (Addgene# 12260, 12259), Tomasz Skorski, and Steven Chan for sharing plasmid constructs and cells. We also thank Alexander Avgoustis for helping with AML specimens through Leukemia Tissue Bank at Princess Margaret Cancer Centre/University Health Network. We acknowledge Nicholas Khuu, Julissa Tsao (Princess Margaret Genomics Centre, Toronto), and Drs. Arindam Maitra, Disha Banerjee, Subrata Patra (National Genomics Core/Co-TERI, National Institute of Biomedical Genomics, Kalyani, India) for next-generation sequencing services, Princess Margaret (UHN) Animal Resources Centre, Flow Cytometry Core, CSIR-IICB Flow Cytometry, Central Instrumentation, Radiation Facility, Bidhan Chandra Krishi Viswa Vidyalaya Radiation Facility and Dr. Arunima Maiti, Tata Translational Cancer Research Center (TTCRC) for Flow Cytometry sorting facility and experimental help. We thank Dr. Nabanita Dasgupta, NRS Medical College & Hospital for providing umbilical cord blood samples. We are grateful to Dr. Craig Jordan (U Colorado) for sharing transcriptome datasets of venetoclax-resistant Mono-AML, and we appreciate his comments during the preparation of this manuscript. We also thank Drs. Stephanie Xie, Helena Boutzen, Jean Wang, and other members of the Sengupta and Dick laboratories for comments and helpful discussions, and Sally Desilva, Monica Doedens for administrative assistance. This study is supported by funding from Council for Scientific & Industrial Research (CSIR) (HCP-0008, HCP-23 and P07/MLP-AS/578), Department of Biotechnology (DBT) (BT/RLF/RE-ENTRY/06/2010), Ramalingaswami Fellowship (to AS), DBT (BT/PR13023/MED/31/311/2015) (to AS), and Department of Science & Technology (DST) (SB/SO/HS-053/2013), Govt. of India (to AS). AS was a Visiting Scientist in JED laboratory at Princess Margaret Cancer Centre, Toronto, supported by Indian Council of Medical Research (ICMR)-DHR (Short-Term) International Fellowship (INDO/FRC/452/S-11/2019-20-lHD). JED acknowledges funding from the: Princess Margaret Cancer Centre Foundation, Ontario Institute for Cancer Research (OICR) with funding from the Province of Ontario, Canadian Institutes for Health Research (Foundation: 154293, Operating Grant 130412, Operating Grant 89932, and Canada-Japan CEEHRC Teams in Epigenetics of Stem Cells 127882); International Development Research Centre, Canadian Cancer Society (703212); Terry Fox Research Institute Program Project Grant; University of Toronto’s Medicine by Design initiative, which receives funding from the Canada First Research Excellence Fund; and a Canada Research Chair. MM acknowledges support from Israel Science Foundation (ISF 1512/14), Varda and Boaz Dotan Research Center in Hemato-Oncology, and Israel Cancer Research Fund (RCDA 14-171). LDB was a recipient of CSIR-Shyama Prasad Mukherjee Fellowship. SG, WS, SB, AB acknowledge research fellowships from CSIR and SKB thanks DBT for financial support. SS, SSC, and MB, SC received funding from CSIR and UGC, respectively.

Author information

Authors and Affiliations

Authors

Contributions

Conception, study design, and interpretation: AS. Experimental design, data acquisition, analysis, and interpretation: LDB, SG, SKB. Immunoblot analysis: WS, SSC. Biochemical studies: SB, MB, SS, AB, SC. Xenotransplantation and pharmacological studies: LJ, NM, OIG, AS. Drug sensitivity and cell survival assays: SG, SKB. Drug combination index analysis: WS, SB. ATAC-seq, RNA-seq, and computational analysis: AMu. RNAi screening: SSNAM, MM. Bioinformatics analysis: LDB, SG, AGXZ, MB. AML tissue banking and characterization: AA, JAK, A. Mi., ERL, DB, MDM. Manuscript writing: LDB, AS. Research direction, resources, fund acquisition, manuscript editing, and overall supervision: JED, AS. All authors have contributed and agreed with the final version of the manuscript.

Corresponding authors

Correspondence to John E. Dick or Amitava Sengupta.

Ethics declarations

Competing interests

JED Celgene: Research Funding; Trillium Therapeutics/Pfizer: patents for Sirp-a targeting; Graphite Bio: SAB. MDM Astellas: Consultancy. No potential conflicts of interest are disclosed by the other authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boila, L.D., Ghosh, S., Bandyopadhyay, S.K. et al. KDM6 demethylases integrate DNA repair gene regulation and loss of KDM6A sensitizes human acute myeloid leukemia to PARP and BCL2 inhibition. Leukemia 37, 751–764 (2023). https://doi.org/10.1038/s41375-023-01833-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-01833-z

Search

Quick links