Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal mixture exposures and serum lipid levels in childhood: the Rhea mother-child cohort in Greece

Abstract

Background

Growing evidence suggests that cardiovascular disease develops over the lifetime, often beginning in childhood. Metal exposures have been associated with cardiovascular disease and important risk factors, including dyslipidemia, but prior studies have largely focused on adult populations and single metal exposures.

Objective

To investigate the individual and joint impacts of multiple metal exposures on lipid levels during childhood.

Methods

This cross-sectional study included 291 4-year-old children from the Rhea Cohort Study in Heraklion, Greece. Seven metals (manganese, cobalt, selenium, molybdenum, cadmium, mercury, and lead) were measured in whole blood using inductively coupled plasma mass spectrometry. Serum lipid levels included total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol. To determine the joint and individual impacts of child metal exposures (log2-transformed) on lipid levels, Bayesian kernel machine regression (BKMR) was employed as the primary multi-pollutant approach. Potential effect modification by child sex and childhood environmental tobacco smoke exposure was also evaluated.

Results

BKMR identified a positive association between the metal mixture and both total and LDL cholesterol. Of the seven metals examined, selenium (median 90.6 [IQR = 83.6, 96.5] µg/L) was assigned the highest posterior inclusion probability for both total and LDL cholesterol. A difference in LDL cholesterol of 8.22 mg/dL (95% CI = 1.85, 14.59) was observed when blood selenium was set to its 75th versus 25th percentile, holding all other metals at their median values. In stratified analyses, the positive association between selenium and LDL cholesterol was only observed among boys or among children exposed to environmental tobacco smoke during childhood.

Impact statement

Growing evidence indicates that cardiovascular events in adulthood are the consequence of the lifelong atherosclerotic process that begins in childhood. Therefore, public health interventions targeting childhood cardiovascular risk factors may have a particularly profound impact on reducing the burden of cardiovascular disease. Although growing evidence supports that both essential and nonessential metals contribute to cardiovascular disease and risk factors, such as dyslipidemia, prior studies have mainly focused on single metal exposures in adult populations. To address this research gap, the current study investigated the joint impacts of multiple metal exposures on lipid concentrations in early childhood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Joint associations of the metals with low-density lipoprotein at 4 years of age, estimated by BKMR (n = 291).

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are not publicly available due to the privacy of individuals that participated in the study. The data will be available on reasonable request to the Rhea Cohort Study.

References

  1. Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 26 Apr 2022.

  2. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yusuf S, Reddy S, Ôunpuu S, Anand S. Global burden of cardiovascular diseases. Circulation. 2001;104:2746–53.

    Article  CAS  PubMed  Google Scholar 

  4. Olson M, Chambers M, Shaibi G. Pediatric markers of adult cardiovascular disease. Curr Pediatr Rev. 2017;13:255–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Koskinen J, Juonala M, Dwyer T, Venn A, Thomson R, Bazzano L, et al. Impact of lipid measurements in youth in addition to conventional clinic-based risk factors on predicting preclinical atherosclerosis in adulthood: International Childhood Cardiovascular Cohort Consortium. Circulation. 2018;137:1246–55.

    Article  PubMed  Google Scholar 

  6. Pool LR, Aguayo L, Brzezinski M, Perak AM, Davis MM, Greenland P, et al. Childhood risk factors and adulthood cardiovascular disease: a systematic review. J Pediatr. 2021;232:118–26.e23.

    Article  PubMed  Google Scholar 

  7. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics 2011;128:S213–56.

  8. Aljahdali AA, Peterson KE, Cantoral A, Ruiz-Narvaez E, Tellez-Rojo MM, Kim HM, et al. Diet Quality scores and cardiometabolic risk factors in mexican children and adolescents: a longitudinal analysis. Nutrients. 2022;14:896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pan A, Lin X, Hemler E, Hu FB. Diet and cardiovascular disease: advances and challenges in population-based studies. Cell Metab. 2018;27:489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nocon M, Hiemann T, Müller-Riemenschneider F, Thalau F, Roll S, Willich SN. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil. 2008;15:239–46.

    Article  PubMed  Google Scholar 

  11. Lear SA, Hu W, Rangarajan S, Gasevic D, Leong D, Iqbal R, et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet. 2017;390:2643–54.

    Article  PubMed  Google Scholar 

  12. Münzel T, Hahad O, Sørensen M, Lelieveld J, Duerr GD, Nieuwenhuijsen M, et al. Environmental risk factors and cardiovascular diseases: a comprehensive expert review. Cardiovasc Res. 2022;118:2880–902.

  13. Chowdhury R, Ramond A, O’Keeffe LM, Shahzad S, Kunutsor SK, Muka T, et al. Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2018;362:k3310.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang A-M, Lo K, Zheng T-Z, Yang J-L, Bai Y-N, Feng Y-Q, et al. Environmental heavy metals and cardiovascular diseases: status and future direction. Chronic Dis Transl Med. 2020;6:251–9.

    PubMed  PubMed Central  Google Scholar 

  15. Nigra AE, Ruiz-Hernandez A, Redon J, Navas-Acien A, Tellez-Plaza M. Environmental metals and cardiovascular disease in adults: a systematic review beyond lead and cadmium. Curr Environ Health Rep. 2016;3:416–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lamas GA, Bhatnagar A, Jones MR, Mann KK, Nasir K, Tellez-Plaza M, et al. Contaminant metals as cardiovascular risk factors: a scientific statement from the American Heart Association. J Am Heart Assoc. 2023;12:e029852.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jiang Y, Zheng W. Cardiovascular toxicities upon manganese exposure. Cardiovasc Toxicol. 2005;5:345–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O’Neal SL, Zheng W. Manganese toxicity upon overexposure: a decade in review. Curr Environ Health Rep. 2015;2:315–28.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xiao Y, Yuan Y, Liu Y, Yu Y, Jia N, Zhou L, et al. Circulating multiple metals and incident stroke in Chinese adults. Stroke. 2019;50:1661–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jenkinson MRJ, Meek RMD, Tate R, MacMillan S, Grant MH, Currie S. Cobalt-induced cardiomyopathy—do circulating cobalt levels matter? Bone Jt Res. 2021;10:340–7.

    Article  Google Scholar 

  21. Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E. Serum selenium concentrations and hypertension in the US population. Circ Cardiovasc Qual Outcomes. 2009;2:369–76.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Su L, Jin Y, Unverzagt FW, Liang C, Cheng Y, Hake AM, et al. Longitudinal association between selenium levels and hypertension in a rural elderly Chinese cohort. J Nutr Health Aging. 2016;20:983–8.

    Article  CAS  PubMed  Google Scholar 

  23. Tellez-Plaza M, Guallar E, Navas-Acien A. Environmental metals and cardiovascular disease. BMJ. 2018;362:k3435.

    Article  PubMed  Google Scholar 

  24. Sanders AP, Flood K, Chiang S, Herring AH, Wolf L, Fry RC. Towards prenatal biomonitoring in north carolina: assessing arsenic, cadmium, mercury, and lead levels in pregnant women. PLoS One. 2012;7:e31354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metals toxicity and the environment. EXS. 2012;101:133–64.

    PubMed  PubMed Central  Google Scholar 

  26. Gouaref I, Koceir E-A, Gouaref I, Koceir E-A. Trace elements modulates oxidative stress in type 2 diabetes. 2017 IntechOpen, https://doi.org/10.5772/intechopen.71172.

  27. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 2021;12. https://www.frontiersin.org/articles/10.3389/fphar.2021.643972. Accessed 26 Nov 2022.

  28. Kang P, Shin HY, Kim KY. Association between dyslipidemia and mercury exposure in adults. Int J Environ Res Public Health. 2021;18:775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim D-W, Ock J, Moon K-W, Park C-H. Association between heavy metal exposure and dyslipidemia among Korean adults: from the Korean National Environmental Health Survey, 2015-2017. Int J Environ Res Public Health. 2022;19:3181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou Z, Lu Y-H, Pi H-F, Gao P, Li M, Zhang L, et al. Cadmium exposure is associated with the prevalence of dyslipidemia. Cell Physiol Biochem. 2016;40:633–43.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu X, Fan Y, Sheng J, Gu L, Tao Q, Huang R, et al. Association Between blood heavy metal concentrations and dyslipidemia in the elderly. Biol Trace Elem Res. 2021;199:1280–90.

    Article  CAS  PubMed  Google Scholar 

  32. Luo T, Chen S, Cai J, Liu Q, Gou R, Mo X, et al. Association between combined exposure to plasma heavy metals and dyslipidemia in a Chinese population. Lipids Health Dis. 2022;21:131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang Q, Xiao Y, Long P, Li W, Yu Y, Liu Y, et al. Associations of plasma metal concentrations with incident dyslipidemia: prospective findings from the Dongfeng-Tongji cohort. Chemosphere. 2021;285:131497.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao M, Yin G, Xu J, Ge X, Li A, Mei Y, et al. Independent, combine and interactive effects of heavy metal exposure on dyslipidemia biomarkers: a cross-sectional study in northeastern China. Ecotoxicol Environ Saf. 2023;250:114494.

    Article  CAS  PubMed  Google Scholar 

  35. Huang J-H, Tao L, Wu Y, He W, Wang J-X, Chen X, et al. Cobalt exposure and dyslipidemia in elderly population: the mediating role of systemic inflammation and lipid peroxidation. Environ Sci Pollut Res Int. 2023;30:50402–11.

    Article  CAS  PubMed  Google Scholar 

  36. Xu H, Mao Y, Xu B, Hu Y. Low-level environmental lead and cadmium exposures and dyslipidemia in adults: findings from the NHANES 2005-2016. J Trace Elem Med Biol. 2021;63:126651.

    Article  CAS  PubMed  Google Scholar 

  37. Li S, Liu R, Wu Y, Liang R, Zhou Z, Chen J, et al. Elevated serum lead and cadmium levels associated with increased risk of dyslipidemia in children aged 6 to 9 years in Shenzhen, China. Environ Sci Pollut Res Int. 2023. https://doi.org/10.1007/s11356-023-27335-0

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xiao L, Zhou Y, Ma J, Cao L, Wang B, Zhu C, et al. The cross-sectional and longitudinal associations of chromium with dyslipidemia: a prospective cohort study of urban adults in China. Chemosphere. 2019;215:362–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lopes-Araújo A, Arrifano GP, Macchi BM, Augusto-Oliveira M, Santos-Sacramento L, Rodríguez Martín-Doimeadios RC, et al. Hair mercury is associated with dyslipidemia and cardiovascular risk: an anthropometric, biochemical and genetic cross-sectional study of Amazonian vulnerable populations. Environ Res. 2023;229:115971.

    Article  PubMed  Google Scholar 

  40. Stranges S, Galletti F, Farinaro E, D’Elia L, Russo O, Iacone R, et al. Associations of selenium status with cardiometabolic risk factors: an 8-year follow-up analysis of the Olivetti Heart study. Atherosclerosis. 2011;217:274–8.

    Article  CAS  PubMed  Google Scholar 

  41. Chen C, Jin Y, Unverzagt FW, Cheng Y, Hake AM, Liang C, et al. The association between selenium and lipid levels: a longitudinal study in rural elderly Chinese. Arch Gerontol Geriatr. 2015;60:147–52.

    Article  CAS  PubMed  Google Scholar 

  42. Cold F, Winther KH, Pastor-Barriuso R, Rayman MP, Guallar E, Nybo M, et al. Randomised controlled trial of the effect of long-term selenium supplementation on plasma cholesterol in an elderly Danish population. Br J Nutr. 2015;114:1807–18.

    Article  CAS  PubMed  Google Scholar 

  43. Ju W, Li X, Li Z, Wu GR, Fu XF, Yang XM, et al. The effect of selenium supplementation on coronary heart disease: a systematic review and meta-analysis of randomized controlled trials. J Trace Elem Med Biol. 2017;44:8–16.

    Article  CAS  PubMed  Google Scholar 

  44. Howe CG, Margetaki K, Vafeiadi M, Roumeliotaki T, Karachaliou M, Kogevinas M, et al. Prenatal metal mixtures and child blood pressure in the Rhea mother-child cohort in Greece. Environ Health. 2021;20:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shih Y-H, Howe CG, Scannell Bryan M, Shahriar M, Kibriya MG, Jasmine F, et al. Exposure to metal mixtures in relation to blood pressure among children 5–7 years old. Environ Epidemiol. 2021;5:e135.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu M, Li M, Guo W, Zhao L, Yang H, Yu J, et al. Co-exposure to priority-controlled metals mixture and blood pressure in Chinese children from two panel studies. Environ Pollut. 2022;306:119388.

    Article  CAS  PubMed  Google Scholar 

  47. Ma Y, Liang C, Wang Z, Wang X, Xie L, Tao S, et al. Association between prenatal metals exposure and blood pressure in 5-6 years children: a birth cohort study. Environ Res. 2023;219:114974.

    Article  CAS  PubMed  Google Scholar 

  48. Desai G, Niu Z, Luo W, Frndak S, Shaver AL, Kordas K. Low-level exposure to lead, mercury, arsenic, and cadmium, and blood pressure among 8-17-year-old participants of the 2009–2016 National Health and Nutrition Examination Survey. Environ Res. 2021;197:111086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kupsco A, Kioumourtzoglou M-A, Just AC, Amarasiriwardena C, Estrada-Gutierrez G, Cantoral A, et al. prenatal metal concentrations and childhood cardiometabolic risk using Bayesian kernel machine regression to assess mixture and interaction effects. Epidemiology. 2019;30:263–73.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Grigg J. Environmental toxins; their impact on children’s health. Arch Dis Child. 2004;89:244–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Michas G, Karvelas G, Trikas A. Cardiovascular disease in Greece; the latest evidence on risk factors. Hell J Cardiol. 2019;60:271–5.

    Article  Google Scholar 

  52. Touloumi G, Karakosta A, Kalpourtzi N, Gavana M, Vantarakis A, Kantzanou M, et al. High prevalence of cardiovascular risk factors in adults living in Greece: the EMENO National Health Examination Survey. BMC Public Health. 2020;20:1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chatzi L, Leventakou V, Vafeiadi M, Koutra K, Roumeliotaki T, Chalkiadaki G, et al. Cohort profile: the mother-child cohort in Crete, Greece (Rhea study). Int J Epidemiol. 2017;46:1392–1393k.

    Article  PubMed  Google Scholar 

  54. Vafeiadi M, Myridakis A, Roumeliotaki T, Margetaki K, Chalkiadaki G, Dermitzaki E, et al. Association of early life exposure to phthalates with obesity and cardiometabolic traits in childhood: sex specific associations. Front Public Health. 2018;6:327.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Daraki V, Georgiou V, Papavasiliou S, Chalkiadaki G, Karahaliou M, Koinaki S, et al. Metabolic profile in early pregnancy is associated with offspring adiposity at 4 years of age: the Rhea pregnancy cohort Crete, Greece. PLoS One. 2015;10:e0126327.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chatzi L, Ierodiakonou D, Margetaki K, Vafeiadi M, Chalkiadaki G, Roumeliotaki T, et al. Associations of prenatal exposure to cadmium with child growth, obesity, and cardiometabolic traits. Am J Epidemiol. 2019;188:141–50.

    Article  PubMed  Google Scholar 

  57. Kippler M, Goessler W, Nermell B, Ekström EC, Lönnerdal B, El Arifeen S, et al. Factors influencing intestinal cadmium uptake in pregnant Bangladeshi women–a prospective cohort study. Environ Res. 2009;109:914–21.

    Article  CAS  PubMed  Google Scholar 

  58. Martinez-Morata I, Sobel M, Tellez-Plaza M, Navas-Acien A, Howe CG, Sanchez TR. A state-of-the-science review on metal biomarkers. Curr Environ Health Rep. 2023. https://doi.org/10.1007/s40572-023-00402-x.

  59. Leventakou V, Georgiou V, Chatzi L, Sarri K. Relative validity of an FFQ for pre-school children in the mother-child ‘Rhea’ birth cohort in Crete, Greece. Public Health Nutr. 2015;18:421–7.

    Article  PubMed  Google Scholar 

  60. Bobb JF, Claus Henn B, Valeri L, Coull BA. Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Environ Health. 2018;17:67.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Keil AP, Buckley JP, O’Brien KM, Ferguson KK, Zhao S, White AJ. A quantile-based g-computation approach to addressing the effects of exposure mixtures. Environ Health Perspect. 2020;128:047004.

    Article  PubMed  PubMed Central  Google Scholar 

  62. National Institutes of Health Office of Dietary Supplements. Selenium fact sheet for health professionals. https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional/. Accessed 12 Jun 2023.

  63. National Institutes of Health Office of Dietary Supplements. Manganese fact sheet for health professionals. https://ods.od.nih.gov/factsheets/Manganese-HealthProfessional/. Accessed 21 Feb 2024.

  64. National Institutes of Health Office of Dietary Supplements. Molybdenum fact sheet for health professionals. https://ods.od.nih.gov/factsheets/Molybdenum-HealthProfessional/. Accessed 21 Feb 2024.

  65. Schwalfenberg GK, Genuis SJ. Vitamin D, essential minerals, and toxic elements: exploring interactions between nutrients and toxicants in clinical medicine. ScientificWorldJournal. 2015;2015:318595.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Peng X, Li C, Zhao D, Huang L. Associations of micronutrients exposure with cadmium body burden among population: a systematic review. Ecotoxicol Environ Saf. 2023;256:114878.

    Article  CAS  PubMed  Google Scholar 

  67. Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent updates. Interdiscip Toxicol. 2012;5:47–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sun L, Yuan J-L, Chen Q-C, Xiao W-K, Ma G-P, Liang J-H, et al. Red meat consumption and risk for dyslipidaemia and inflammation: a systematic review and meta-analysis. Front Cardiovasc Med. 2022;9:996467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kuang H, Yang F, Zhang Y, Wang T, Chen G. The impact of egg nutrient composition and its consumption on cholesterol homeostasis. Cholesterol. 2018;2018:6303810.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kiesswetter E, Stadelmaier J, Petropoulou M, Morze J, Grummich K, Roux I, et al. Effects of dairy intake on markers of cardiometabolic health in adults: a systematic review with network meta-analysis. Adv Nutr. 2023;14:438–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Giosuè A, Calabrese I, Vitale M, Riccardi G, Vaccaro O. Consumption of dairy foods and cardiovascular disease: a systematic review. Nutrients. 2022;14:831.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Radkhah N, Zarezadeh M, Jamilian P, Ostadrahimi A. The effect of vitamin D supplementation on lipid profiles: an umbrella review of meta-analyses. Adv Nutr. 2023;14:1479–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dludla PV, Nkambule BB, Nyambuya TM, Ziqubu K, Mabhida SE, Mxinwa V, et al. Vitamin C intake potentially lowers total cholesterol to improve endothelial function in diabetic patients at increased risk of cardiovascular disease: a systematic review of randomized controlled trials. Front Nutr. 2022;9:1011002.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Urbano T, Filippini T, Lasagni D, De Luca T, Sucato S, Polledri E, et al. Associations between urinary and dietary selenium and blood metabolic parameters in a healthy northern Italy population. Antioxidants. 2021;10:1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ma X, Jiang S, Yan S, Li M, Wang C, Pan Y, et al. Association between copper, zinc, iron, and selenium intakes and TC/HDL-C ratio in US adults. Biol Trace Elem Res. 2020;197:43–51.

    Article  CAS  PubMed  Google Scholar 

  76. Abasilim C, Persky V, Turyk ME. Association of Blood Total Mercury with Dyslipidemia in a sample of US Adolescents: results from the National Health and Nutrition Examination Survey Database, 2011–2018. Hyg Environ Health Adv. 2023;6:100047.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ge X, Yang A, Huang S, Luo X, Hou Q, Huang L, et al. Sex-specific associations of plasma metals and metal mixtures with glucose metabolism: an occupational population-based study in China. Sci Total Environ. 2021;760:143906.

    Article  CAS  PubMed  Google Scholar 

  78. Jin T, Park EY, Kim B, Oh J-K. Association between blood mercury concentration and prevalence of borderline hypercholesterolemia among adolescents: the Korea National Health and Nutrition Examination Survey (KNHANES) 2010-2013 and 2016. Toxics. 2021;9:242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Frei B, Forte TM, Ames BN, Cross CE. Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Protective effects of ascorbic acid. Biochem J. 1991;277:133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Church DF, Pryor WA. Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect. 1985;64:111–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pryor WA, Hales BJ, Premovic PI, Church DF. The radicals in cigarette tar: their nature and suggested physiological implications. Science. 1983;220:425–7.

    Article  CAS  PubMed  Google Scholar 

  82. Pryor WA, Stone K, Zang LY, Bermúdez E. Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage. Chem Res Toxicol. 1998;11:441–8.

    Article  CAS  PubMed  Google Scholar 

  83. Yıldırım F, Sermetow K, Aycicek A, Kocyigit A, Erel O. Increased oxidative stress in preschool children exposed to passive smoking. J Pediatr. 2011;87:523–8.

    Google Scholar 

  84. Shermatov K, Zeyrek D, Yildirim F, Kilic M, Cebi N, Kocyigit A. DNA damage in children exposed to secondhand cigarette smoke and its association with oxidative stress. Indian Pediatr. 2012;49:958–62.

    Article  PubMed  Google Scholar 

  85. Smoking and Inflammation. PLoS Med. 2005;2:e198.

  86. Lee J, Taneja V, Vassallo R. Cigarette smoking and inflammation. J Dent Res. 2012;91:142–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. van der Vaart H, Postma DS, Timens W, ten Hacken NH. Acute effects of cigarette smoke on inflammation and oxidative stress: a review. Thorax. 2004;59:713–21.

    Article  PubMed  PubMed Central  Google Scholar 

  88. García OP, Long KZ, Rosado JL. Impact of micronutrient deficiencies on obesity. Nutr Rev. 2009;67:559–72.

    Article  PubMed  Google Scholar 

  89. Klop B, Elte JWF, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013;5:1218–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tinkov AA, Aschner M, Ke T, Ferrer B, Zhou J-C, Chang J-S, et al. Adipotropic effects of heavy metals and their potential role in obesity. Fac Rev. 2021;10:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bobb J _bkmr: Bayesian Kernel Machine Regression_. R package version 0.2.2. 2022. https://CRAN.R-project.org/package=bkmr.

  92. Keil A _qgcomp: Quantile G-Computation_. R package version 2.10.1. 2022. https://CRAN.R-project.org/package=qgcomp.

  93. Burk RF. Selenium, an antioxidant nutrient. Nutr Clin Care. 2002;5:75–79.

    Article  PubMed  Google Scholar 

  94. Papp LV, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal. 2007;9:775–806.

    Article  CAS  PubMed  Google Scholar 

  95. Barceloux DG. Selenium. J Toxicol Clin Toxicol. 1999;37:145–72.

    Article  CAS  PubMed  Google Scholar 

  96. Filippini T, Michalke B, Wise LA, Malagoli C, Malavolti M, Vescovi L, et al. Diet composition and serum levels of selenium species: a cross-sectional study. Food Chem Toxicol. 2018;115:482–90.

    Article  CAS  PubMed  Google Scholar 

  97. Filippini T, Cilloni S, Malavolti M, Violi F, Malagoli C, Tesauro M, et al. Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a Northern Italy community. J Trace Elem Med Biol. 2018;50:508–17.

    Article  CAS  PubMed  Google Scholar 

  98. Stoffaneller R, Morse NL. A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients. 2015;7:1494–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Letsiou S, Nomikos T, Panagiotakos D, Pergantis SA, Fragopoulou E, Antonopoulou S, et al. Dietary habits of Greek adults and serum total selenium concentration: the ATTICA study. Eur J Nutr. 2010;49:465–72.

    Article  CAS  PubMed  Google Scholar 

  100. Godos J, Giampieri F, Micek A, Battino M, Forbes-Hernández TY, Quiles JL, et al. Effect of Brazil nuts on selenium status, blood lipids, and biomarkers of oxidative stress and inflammation: a systematic review and meta-analysis of randomized clinical trials. Antioxidants. 2022;11:403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bleys J, Navas-Acien A, Guallar E. Serum selenium and diabetes in U.S. adults. Diabetes Care. 2007;30:829–34.

    Article  CAS  PubMed  Google Scholar 

  102. Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E. Serum selenium concentrations and diabetes in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2003–2004. Environ Health Perspect. 2009;117:1409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bleys J, Navas-Acien A, Stranges S, Menke A, Miller ER, Guallar E. Serum selenium and serum lipids in US adults. Am J Clin Nutr. 2008;88:416–23.

    Article  CAS  PubMed  Google Scholar 

  104. Laclaustra M, Stranges S, Navas-Acien A, Ordovas JM, Guallar E. Serum selenium and serum lipids in US adults: National Health and Nutrition Examination Survey (NHANES) 2003-2004. Atherosclerosis. 2010;210:643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Stranges S, Laclaustra M, Ji C, Cappuccio FP, Navas-Acien A, Ordovas JM, et al. Higher selenium status is associated with adverse blood lipid profile in British adults. J Nutr. 2010;140:81–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Combs GF, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147:217–23.

    Article  PubMed  Google Scholar 

  107. Stranges S, Sieri S, Vinceti M, Grioni S, Guallar E, Laclaustra M, et al. A prospective study of dietary selenium intake and risk of type 2 diabetes. BMC Public Health. 2010;10:564.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ju W, Ji M, Li X, Li Z, Wu G, Fu X, et al. Relationship between higher serum selenium level and adverse blood lipid profile. Clin Nutr. 2018;37:1512–7.

    Article  CAS  PubMed  Google Scholar 

  109. Vinceti M, Filippini T, Cilloni S, Crespi CM. The epidemiology of selenium and human cancer. Adv Cancer Res. 2017;136:1–48.

    Article  CAS  PubMed  Google Scholar 

  110. Vinceti M, Filippini T, Wise LA. Environmental selenium and human health: an update. Curr Environ Health Rep. 2018;5:464–85.

    Article  PubMed  Google Scholar 

  111. Stahel P, Kim JJ, Cieslar SRL, Warrington JM, Xiao C, Cant JP. Supranutritional selenium intake from enriched milk casein impairs hepatic insulin sensitivity via attenuated IRS/PI3K/AKT signaling and decreased PGC-1α expression in male Sprague-Dawley rats. J Nutr Biochem. 2017;41:142–50.

    Article  CAS  PubMed  Google Scholar 

  112. Bi C-L, Wang H, Wang Y-J, Sun J, Dong J-S, Meng X, et al. Selenium inhibits Staphylococcus aureus-induced inflammation by suppressing the activation of the NF-κB and MAPK signalling pathways in RAW264.7 macrophages. Eur J Pharm. 2016;780:159–65.

    Article  CAS  Google Scholar 

  113. Nazıroglu M. Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res. 2009;34:2181–91.

    Article  PubMed  Google Scholar 

  114. Galan-Chilet I, Tellez-Plaza M, Guallar E, De Marco G, Lopez-Izquierdo R, Gonzalez-Manzano I, et al. Plasma selenium levels and oxidative stress biomarkers: a gene-environment interaction population-based study. Free Radic Biol Med. 2014;74:229–36.

    Article  CAS  PubMed  Google Scholar 

  115. Yang Z, Yan C, Liu G, Niu Y, Zhang W, Lu S, et al. Plasma selenium levels and nonalcoholic fatty liver disease in Chinese adults: a cross-sectional analysis. Sci Rep. 2016;6:37288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang X, Seo YA, Park SK. Serum selenium and non-alcoholic fatty liver disease (NAFLD) in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2011–2016. Environ Res. 2021;197:111190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dhingra S, Bansal MP. Hypercholesterolemia and LDL receptor mRNA expression: modulation by selenium supplementation. Biometals. 2006;19:493–501.

    Article  CAS  PubMed  Google Scholar 

  118. Nassir F, Moundras C, Bayle D, Sérougne C, Gueux E, Rock E, et al. Effect of selenium deficiency on hepatic lipid and lipoprotein metabolism in the rat. Br J Nutr. 1997;78:493–500.

    Article  CAS  PubMed  Google Scholar 

  119. Magnussen CG, Venn A, Thomson R, Juonala M, Srinivasan SR, Viikari JSA, et al. The association of pediatric low- and high-density lipoprotein cholesterol dyslipidemia classifications and change in dyslipidemia status with carotid intima-media thickness in adulthood evidence from the cardiovascular risk in Young Finns study, the Bogalusa Heart study, and the CDAH (Childhood Determinants of Adult Health) study. J Am Coll Cardiol. 2009;53:860–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Raitakari O, Kartiosuo N, Pahkala K, Hutri-Kähönen N, Bazzano LA, Chen W, et al. Lipoprotein(a) in youth and prediction of major cardiovascular outcomes in adulthood. Circulation. 2023;147:23–31.

    Article  CAS  PubMed  Google Scholar 

  121. Whanger P, Vendeland S, Park YC, Xia Y. Metabolism of subtoxic levels of selenium in animals and humans. Ann Clin Lab Sci. 1996;26:99–113.

    CAS  PubMed  Google Scholar 

  122. Fang H, He X, Wu Y, Chen S, Zhang M, Pan F, et al. Association between selenium level in blood and glycolipid metabolism in residents of Enshi prefecture, China. Biol Trace Elem Res. 2021;199:2456–66.

    Article  CAS  PubMed  Google Scholar 

  123. Fan Y, Zhang C, Bu J. Relationship between selected serum metallic elements and obesity in children and adolescent in the U.S. Nutrients. 2017;9:104.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Longnecker MP, Stram DO, Taylor PR, Levander OA, Howe M, Veillon C, et al. Use of selenium concentration in whole blood, serum, toenails, or urine as a surrogate measure of selenium intake. Epidemiology. 1996;7:384–90.

    Article  CAS  PubMed  Google Scholar 

  125. Nawrot TS, Staessen JA, Roels HA, Den Hond E, Thijs L, Fagard RH, et al. Blood pressure and blood selenium: a cross-sectional and longitudinal population study. Eur Heart J. 2007;28:628–33.

    Article  CAS  PubMed  Google Scholar 

  126. Li J, Lo K, Shen G, Feng Y-Q, Huang Y-Q. Gender difference in the association of serum selenium with all-cause and cardiovascular mortality. Postgrad Med. 2020;132:148–55.

    Article  CAS  PubMed  Google Scholar 

  127. R Cardoso B, Hare DJ, Macpherson H. Sex-dependent association between selenium status and cognitive performance in older adults. Eur J Nutr. 2021;60:1153–9.

    Article  CAS  PubMed  Google Scholar 

  128. Angstwurm MWA, Engelmann L, Zimmermann T, Lehmann C, Spes CH, Abel P, et al. Selenium in Intensive Care (SIC): results of a prospective randomized, placebo-controlled, multiple-center study in patients with severe systemic inflammatory response syndrome, sepsis, and septic shock. Crit Care Med. 2007;35:118–26.

    Article  CAS  PubMed  Google Scholar 

  129. Zhang J-W, Lin Y, Liu Y-M, Wang M-M, Gong J-G, Shen X-G, et al. Excess selenium intake is associated with microalbuminuria in female but not in male among adults with obesity: results from NHANES 2009-2018. Front Nutr. 2023;10:1043395.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kander MC, Cui Y, Liu Z. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med. 2017;21:1024–32.

    Article  PubMed  Google Scholar 

  131. Riese C, Michaelis M, Mentrup B, Götz F, Köhrle J, Schweizer U, et al. Selenium-dependent pre- and posttranscriptional mechanisms are responsible for sexual dimorphic expression of selenoproteins in murine tissues. Endocrinology. 2006;147:5883–92.

    Article  CAS  PubMed  Google Scholar 

  132. Schomburg L. Selene, the goddess of the moon: does she shine on men only? Eur Heart J. 2007;28:2043–4.

    Article  PubMed  Google Scholar 

  133. Järup L, Akesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharm. 2009;238:201–8.

    Article  Google Scholar 

  134. Agency for Toxic Substances and Disease Registry (ATSDR). ATSDR’s substance priority list. https://www.atsdr.cdc.gov/spl/index.html. Accessed 19 May 2023.

  135. Tinkov AA, Filippini T, Ajsuvakova OP, Skalnaya MG, Aaseth J, Bjørklund G, et al. Cadmium and atherosclerosis: a review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environ Res. 2018;162:240–60.

    Article  CAS  PubMed  Google Scholar 

  136. Samarghandian S, Azimi-Nezhad M, Shabestari MM, Azad FJ, Farkhondeh T, Bafandeh F. Effect of chronic exposure to cadmium on serum lipid, lipoprotein and oxidative stress indices in male rats. Interdiscip Toxicol. 2015;8:151–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zwolak I, Zaporowska H. Selenium interactions and toxicity: a review. Selenium interactions and toxicity. Cell Biol Toxicol. 2012;28:31–46.

    Article  CAS  PubMed  Google Scholar 

  138. Zwolak I. The role of selenium in arsenic and cadmium toxicity: an updated review of scientific literature. Biol Trace Elem Res. 2020;193:44–63.

    Article  CAS  PubMed  Google Scholar 

  139. Parízek J, Ostádalová I, Benes I, Babický A. Pregnancy and trace elements: the protective effect of compounds of an essential trace element–selenium–against the peculiar toxic effects of cadmium during pregnancy. J Reprod Fertil. 1968;16:507–9.

    Article  PubMed  Google Scholar 

  140. Li L-L, Cui Y-H, Lu L-Y, Liu Y-L, Zhu C-J, Tian L-J, et al. Selenium stimulates cadmium detoxification in caenorhabditis elegans through thiols-mediated nanoparticles formation and secretion. Environ Sci Technol. 2019;53:2344–52.

    Article  PubMed  Google Scholar 

  141. Al-Saleh I, Al-Rouqi R, Obsum CA, Shinwari N, Mashhour A, Billedo G, et al. Interaction between cadmium (Cd), selenium (Se) and oxidative stress biomarkers in healthy mothers and its impact on birth anthropometric measures. Int J Hyg Environ Health. 2015;218:66–90.

    Article  CAS  PubMed  Google Scholar 

  142. Everson TM, Kappil M, Hao K, Jackson BP, Punshon T, Karagas MR, et al. Maternal exposure to selenium and cadmium, fetal growth, and placental expression of steroidogenic and apoptotic genes. Environ Res. 2017;158:233–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang Y, Wu Y, Luo K, Liu Y, Zhou M, Yan S, et al. The protective effects of selenium on cadmium-induced oxidative stress and apoptosis via mitochondria pathway in mice kidney. Food Chem Toxicol. 2013;58:61–67.

    Article  CAS  PubMed  Google Scholar 

  144. Zhou Y-J, Zhang S-P, Liu C-W, Cai Y-Q. The protection of selenium on ROS mediated-apoptosis by mitochondria dysfunction in cadmium-induced LLC-PK(1) cells. Toxicol Vitr. 2009;23:288–94.

    Article  Google Scholar 

  145. Liu L, Zhang J, Zhang Z, Yao H, Sun G, Xu S. Protective roles of selenium on nitric oxide-mediated apoptosis of immune organs induced by cadmium in chickens. Biol Trace Elem Res. 2014;159:199–209.

    Article  CAS  PubMed  Google Scholar 

  146. Yu R, Chen X. [Effects of selenium on rat hepatocellular DNA damage, apoptosis and changes of cell cycle induced by cadmium in vivo]. Zhonghua Yu Fang Yi Xue Za Zhi. 2004;38:155–8.

    CAS  PubMed  Google Scholar 

  147. Wahba ZZ, Coogan TP, Rhodes SW, Waalkes MP. Protective effects of selenium on cadmium toxicity in rats: role of altered toxicokinetics and metallothionein. J Toxicol Environ Health. 1993;38:171–82.

    Article  CAS  PubMed  Google Scholar 

  148. Battin EE, Perron NR, Brumaghim JL. The central role of metal coordination in selenium antioxidant activity. Inorg Chem. 2006;45:499–501.

    Article  CAS  PubMed  Google Scholar 

  149. Zhang C, Lin J, Ge J, Wang L-L, Li N, Sun X-T, et al. Selenium triggers Nrf2-mediated protection against cadmium-induced chicken hepatocyte autophagy and apoptosis. Toxicol Vitr. 2017;44:349–56.

    Article  CAS  Google Scholar 

  150. Filippidis FT, Vardavas CI, Loukopoulou A, Behrakis P, Connolly GN, Tountas Y. Prevalence and determinants of tobacco use among adults in Greece: 4 year trends. Eur J Public Health. 2013;23:772–6.

    Article  PubMed  Google Scholar 

  151. Passa A, Agtzidis L, Tsaousidou M, Passa KF. The attitudes of Greeks towards second-hand smoke and the anti-tobacco legislation. https://doi.org/10.1101/2020.11.26.20234666. Accessed 20 Feb 2024.

  152. Raghuveer G, White DA, Hayman LL, Woo JG, Villafane J, Celermajer D, et al. Cardiovascular consequences of childhood secondhand tobacco smoke exposure: prevailing evidence, burden, and racial and socioeconomic disparities: a scientific statement from the American Heart Association. Circulation. 2016;134:e336–e359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Thompson FE, Patterson BH, Weinstein SJ, McAdams M, Spate VL, Hamman RF, et al. Serum selenium and the risk of cervical cancer among women in the United States. Cancer Causes Control. 2002;13:517–26.

    Article  PubMed  Google Scholar 

  154. Kim Y, Wei J, Citronberg J, Hartman T, Fedirko V, Goodman M. Relation of vitamin E and selenium exposure to prostate cancer risk by smoking status: a review and meta-analysis. Anticancer Res. 2015;35:4983–96.

    PubMed  Google Scholar 

  155. Cassano PA, Guertin KA, Kristal AR, Ritchie KE, Bertoia ML, Arnold KB, et al. A randomized controlled trial of vitamin E and selenium on rate of decline in lung function. Respir Res. 2015;16:35.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Al-Mubarak AA, Grote Beverborg N, Suthahar N, Gansevoort RT, Bakker SJL, Touw DJ, et al. High selenium levels associate with reduced risk of mortality and new-onset heart failure: data from PREVEND. Eur J Heart Fail. 2022;24:299–307.

    Article  CAS  PubMed  Google Scholar 

  157. Gümüştekín K, Seven B, Karabulut N, Aktaş O, Gürsan N, Aslan S, et al. Effects of sleep deprivation, nicotine, and selenium on wound healing in rats. Int J Neurosci. 2004;114:1433–42.

    Article  PubMed  Google Scholar 

  158. Sreekala S, Indira M. Effects of exogenous selenium on nicotine-induced oxidative stress in rats. Biol Trace Elem Res. 2009;130:62–71.

    Article  CAS  PubMed  Google Scholar 

  159. Alfaradhi MZ, Fernandez-Twinn DS, Martin-Gronert MS, Musial B, Fowden A, Ozanne SE. Oxidative stress and altered lipid homeostasis in the programming of offspring fatty liver by maternal obesity. Am J Physiol Regul Integr Comp Physiol. 2014;307:R26–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Trapani L, Segatto M, Pallottini V. Regulation and deregulation of cholesterol homeostasis: the liver as a metabolic “power station”. World J Hepatol. 2012;4:184–90.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Ali W, Zhang H, Junaid M, Mao K, Xu N, Chang C, et al. Insights into the mechanisms of arsenic-selenium interactions and the associated toxicity in plants, animals, and humans: a critical review. Crit Rev Environ Sci Technol. 2021;51:704–50.

    Article  CAS  Google Scholar 

  162. Karavoltsos S, Sakellari A, Mihopoulos N, Dassenakis M, Scoullos MJ. Evaluation of the quality of drinking water in regions of Greece. Desalination. 2008;224:317–29.

    Article  CAS  Google Scholar 

  163. Miklavčič A, Casetta A, Snoj Tratnik J, Mazej D, Krsnik M, Mariuz M, et al. Mercury, arsenic and selenium exposure levels in relation to fish consumption in the Mediterranean area. Environ Res. 2013;120:7–17.

    Article  PubMed  Google Scholar 

  164. Vardavas C, Patelarou E, Chatzi L, Vrijheid M, Koutis A, Fthenou E, et al. Determinants of blood cadmium, lead, arsenic, uranium, mercury and molybdenum levels among pregnant women in Crete, Greece. Epidemiology. 2009;20:S174.

    Article  Google Scholar 

  165. Vardavas CI, Patelarou E, Grandér M, Chatzi L, Palm B, Fthenou E, et al. The association between active/passive smoking and toxic metals among pregnant women in Greece. Xenobiotica. 2011;41:456–63.

    Article  CAS  PubMed  Google Scholar 

  166. Stratakis N, Conti DV, Borras E, Sabido E, Roumeliotaki T, Papadopoulou E, et al. Association of fish consumption and mercury exposure during pregnancy with metabolic health and inflammatory biomarkers in children. JAMA Netw Open. 2020;3:e201007.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Cho HW, Kim S-H, Park MJ. An association of blood mercury levels and hypercholesterolemia among Korean adolescents. Sci Total Environ. 2020;709:135965.

    Article  CAS  PubMed  Google Scholar 

  168. Zhang Y, Xu C, Fu Z, Shu Y, Zhang J, Lu C, et al. Associations between total mercury and methyl mercury exposure and cardiovascular risk factors in US adolescents. Environ Sci Pollut Res Int. 2018;25:6265–72.

    Article  CAS  PubMed  Google Scholar 

  169. Buhari O, Dayyab FM, Igbinoba O, Atanda A, Medhane F, Faillace RT. The association between heavy metal and serum cholesterol levels in the US population: National Health and Nutrition Examination Survey 2009-2012. Hum Exp Toxicol. 2020;39:355–64.

    Article  CAS  PubMed  Google Scholar 

  170. Liu Y, Ettinger AS, Téllez-Rojo M, Sánchez BN, Zhang Z, Cantoral A, et al. Prenatal lead exposure, type 2 diabetes, and Cardiometabolic risk factors in Mexican children at age 10-18 years. J Clin Endocrinol Metab. 2020;105:210–8.

    Article  PubMed  Google Scholar 

  171. Steiner MJ, Skinner AC, Perrin EM. Fasting might not be necessary before lipid screening: a nationally representative cross-sectional study. Pediatrics. 2011;128:463–70.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Filippini T, Ferrari A, Michalke B, Grill P, Vescovi L, Salvia C, et al. Toenail selenium as an indicator of environmental exposure: a cross-sectional study. Mol Med Rep. 2017;15:3405–12.

    Article  CAS  PubMed  Google Scholar 

  173. Yu R, Wang Z, Ma M, Xu P, Liu L, Tinkov AA, et al. Associations between circulating SELENOP level and disorders of glucose and lipid metabolism: a meta-analysis. Antioxidants. 2022;11:1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Mozaffarian D, Rimm EB. Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA. 2006;296:1885–99.

    Article  CAS  PubMed  Google Scholar 

  175. Golding J, Taylor C, Iles-Caven Y, Gregory S. The benefits of fish intake: Results concerning prenatal mercury exposure and child outcomes from the ALSPAC prebirth cohort. NeuroToxicology. 2022;91:22–30.

    Article  CAS  PubMed  Google Scholar 

  176. Amigó N, Akinkuolie AO, Chiuve SE, Correig X, Cook NR, Mora S. Habitual fish consumption, n‐3 fatty acids, and nuclear magnetic resonance lipoprotein subfractions in women. J Am Heart Assoc. 2020;9:e014963.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Navas-Acien A, Francesconi KA, Silbergeld EK, Guallar E. Seafood intake and urine concentrations of total arsenic, dimethylarsinate and arsenobetaine in the US population. Environ Res. 2011;111:110–8.

    Article  CAS  PubMed  Google Scholar 

  178. Signes-Pastor AJ, Romano ME, Jackson B, Braun JM, Yolton K, Chen A, et al. Associations of maternal urinary arsenic concentrations during pregnancy with childhood cognitive abilities: the HOME study. Int J Hyg Environ Health. 2022;245:114009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Rhea project was financially supported by Horizon 2020—European Framework Programme for Research and Innovation, ATHLETE, the European Union (grant numbers EU FP6–2003-Food-3-NewGeneris, EU FP6. STREP Hiwate, EU FP7 ENV.2007.1.2.2.2. Project No 211250 Escape, EU FP7–2008-ENV-1.2.1.4 Envirogenomarkers, EU FP7-HEALTH-2009- single stage CHICOS, EU FP7 ENV.2008.1.2.1.6. Proposal No 226285 ENRIECO, EU- FP7- HEALTH-2012 Proposal No 308333 HELIX), and the Greek Ministry of Health. The present study was also funded by Karolinska Institutet and the Swedish Research Council (Project No. 2015-03655). LC was financially supported by NIEHS (grant numbers R01ES030691, R01ES029944, R01 ES030364, P30ES007048, R01ES016813), CGH is supported by a NIH Pathway to Independence Award (R00 ES030400). We would like to thank the Rhea cohort study participants, as well as our colleagues, medical, nursing, and research staff, for their contributions to this study.

Author information

Authors and Affiliations

Authors

Contributions

GY: Formal analysis, Visualization, Writing—original draft. KM: Data curation, Writing—review & editing. MER: Writing—review & editing. MK: Writing—review & editing. MV: Writing—review & editing. TR: Data curation, Writing—review & editing. VB: Investigation, Writing—review & editing. SFF: Conceptualization, Writing—review & editing. LC: Supervision, Funding acquisition, Writing—review & editing. CGH: Conceptualization, Supervision, Writing—review & editing.

Corresponding author

Correspondence to Gyeyoon Yim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yim, G., Margetaki, K., Romano, M.E. et al. Metal mixture exposures and serum lipid levels in childhood: the Rhea mother-child cohort in Greece. J Expo Sci Environ Epidemiol (2024). https://doi.org/10.1038/s41370-024-00674-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41370-024-00674-x

Keywords

Search

Quick links