Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Personal exposure to ultrafine particles in multiple microenvironments among adolescents

Abstract

Background

Experimental studies suggest ultrafine particles (UFPs), the smallest size fraction of particulate matter, may be more toxic than larger particles, however personal sampling studies in children are lacking.

Objective

The objective of this analysis was to examine individual, housing, and neighborhood characteristics associated with personal UFP concentrations as well as the differences in exposures that occur within varying microenvironments.

Methods

We measured weekly personal UFP concentrations and GPS coordinates in 117 adolescents ages 13–17 to describe exposures across multiple microenvironments. Individual, home, and neighborhood characteristics were collected by caregiver completed questionnaires.

Results

Participants regularly exposed to secondhand tobacco smoke had significantly higher indoor concentrations of UFPs compared to participants who were not. We observed that the ‘home’ microenvironment dominated the relative contribution of overall UFP concentrations and sampling time, however, relative proportion of integrated UFP exposure were higher in ‘other’ environments.

Impact Statement

In this study, we employed a novel panel study design, involving real-time measurement of UFP exposure within the multiple microenvironments of adolescents. We found a combination of personal sampling and detailed activity patterns should be used in future studies to accurately describe exposure-behavior relationships.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Average contribution of each microenvironment (%) to participants’ total weekly UFP exposure.

Similar content being viewed by others

Data availability

Requests for deidentified data may be made to the corresponding author.

References

  1. Kreyling WG, Semmler-Behnke M, Möller W. Health implications of nanoparticles. J Nanopart Res. 2006;8:543–62.

    Article  CAS  Google Scholar 

  2. Pope CA 3rd, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56:709–42. https://doi.org/10.1080/10473289.2006.10464485.

    Article  CAS  PubMed  Google Scholar 

  3. Samet JM, Rappold A, Graff D, Cascio WE, Berntsen JH, Huang YC, et al. Concentrated ambient ultrafine particle exposure induces cardiac changes in young healthy volunteers. Am J Respir Crit Care Med. 2009;179:1034–42. https://doi.org/10.1164/rccm.200807-1043OC.

    Article  PubMed  Google Scholar 

  4. Hofman J, Staelens J, Cordell R, Stroobants C, Zikova N, Hama SML, et al. Ultrafine particles in Four European Urban environments: results from a new continuous long-term monitoring network. Atmos Environ. 2016; 136: 68–81. https://www.sciencedirect.com/science/article/pii/S1352231016302783, https://doi.org/10.1016/j.atmosenv.2016.04.010.

  5. Li YR, Feng LT, Chen BY, Kim H, Yi SM, Guo YL, et al. Association of urban particle numbers and sources with lung function among children with asthma or allergies. Sci Total Environ. 2016; 542: 841–44. https://www.sciencedirect.com/science/article/pii/S0048969715309141, https://doi.org/10.1016/j.scitotenv.2015.10.098.

  6. Möller W, Felten K, Sommerer K, Scheuch G, Meyer G, Meyer P, et al. Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am J Respiratory Crit Care Med. 2008;177:426–32. https://doi.org/10.1164/rccm.200602-301oc

    Article  Google Scholar 

  7. Weichenthal S, Kulka R, Dubeau A, Martin C, Wang D, Dales R. Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environ Health Perspect. 2011;119:1373–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Allen, JL, Liu, X, Pelkowski, S, Palmer, B, Conrad, K, Oberdörster, G, et al. Early postnatal exposure to ultrafine particulate matter air pollution: persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice. [In eng]. Environ Health Perspect. 2014; 122: 939–45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154219/, https://doi.org/10.1289/ehp.1307984, https://pubmed.ncbi.nlm.nih.gov/24901756.

  9. Block ML, Wu X, Pei Z, Li G, Wang T, Qin L, et al. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and Nadph oxidase. FASEB J. 2004;18:1618–20. https://doi.org/10.1096/fj.04-1945fje

    Article  CAS  PubMed  Google Scholar 

  10. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. [In eng]. Environ Health Perspect. 2006; 114: 1172–78. https://pubmed.ncbi.nlm.nih.gov/16882521, https://doi.org/10.1289/ehp.9030

  11. Buonanno G, Marini S, Morawska L, Fuoco FC. Individual dose and exposure of italian children to ultrafine particles. Sci Total Environ. 2012; 438: 271–77. http://eprints.qut.edu.au/54086/2/54086.pdf, https://doi.org/10.1016/j.scitotenv.2012.08.074.

  12. Deffner V, Küchenhoff H, Maier V, Pitz M, Cyrys J, Breitner S, et al. Personal exposure to ultrafine particles: two-level statistical modeling of background exposure and time-activity patterns during three seasons. J Exposure Sci Environ Epidemiol. 2016;26:17–25. https://doi.org/10.1038/jes.2014.73

    Article  Google Scholar 

  13. Koehler K, Good N, Wilson A, Mölter A, Moore BF, Carpenter T, et al. The fort collins commuter study: variability in personal exposure to air pollutants by microenvironment. Indoor Air. 2019;29:231–41. https://doi.org/10.1111/ina.12533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bekö G, Kjeldsen BU, Olsen Y, Schipperijn J, Wierzbicka A, Karottki DG, et al. Contribution of various microenvironments to the daily personal exposure to ultrafine particles: personal monitoring coupled with Gps tracking. Atmos Environ. 2015; 110: 122–29. https://www.sciencedirect.com/science/article/pii/S1352231015002770, https://doi.org/10.1016/j.atmosenv.2015.03.053.

  15. Buonanno, G, Stabile L, and Morawska L. Personal exposure to ultrafine particles: the influence of time-activity patterns. Sci Total Environ. 2014; 468-469: 903–07. https://doi.org/10.1016/j.scitotenv.2013.09.016, https://www.sciencedirect.com/science/article/pii/S0048969713010449.

  16. Paunescu A-C, Attoui M, Bouallala S, Sunyer J, Momas I. Personal measurement of exposure to black carbon and ultrafine particles in schoolchildren from Paris Cohort (Paris, France). Indoor Air. 2017;27:766–79. https://doi.org/10.1111/ina.12358

    Article  CAS  PubMed  Google Scholar 

  17. Buonanno G, Marks GB, Morawska L. Health effects of daily airborne particle dose in children: direct association between personal dose and respiratory health effects. Environ Pollut. 2013;180:246–50. https://doi.org/10.1016/j.envpol.2013.05.039.

    Article  CAS  PubMed  Google Scholar 

  18. Zhu Y, Hinds WC, Kim S, Shen S, Constantinos S. Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos Environ. 2002; 36: 4323–35. https://doi.org/10.1016/S1352-2310(02)00354-0, https://www.sciencedirect.com/science/article/pii/S1352231002003540.

  19. Reponen T, Grinshpun SA, Trakumas S, Martuzevicius D, Wang ZM, LeMasters G, et al. Concentration gradient patterns of aerosol particles near interstate highways in the greater cincinnati airshed. J Environ Monit. 2003;5:557–62. https://doi.org/10.1039/b303557c.

    Article  CAS  PubMed  Google Scholar 

  20. Turner A, Brokamp C, Wolfe C, Reponen T, Ryan P. Personal exposure to average weekly ultrafine particles, lung function, and respiratory symptoms in asthmatic and non-asthmatic adolescents. Environ Int. 2021;156:106740 https://doi.org/10.1016/j.envint.2021.106740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Asbach C, Schmitz A, Schmidt F, Monz C, Todea AM. Intercomparison of a personal Cpc and different conventional Cpcs. Aerosol Air Qual Res. 2017;17:1132–41. https://doi.org/10.4209/aaqr.2016.10.0460

    Article  Google Scholar 

  22. He X, Son SY, James K, Yermakov M, Reponen T, McKay RT, et al. Exploring a novel ultrafine particle counter for utilization in respiratory protection studies. J Occup Environ Hyg. 2013;10:D52–4. https://doi.org/10.1080/15459624.2013.766555.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rim D, Wallace L, Nabinger S, Persily A. Reduction of exposure to ultrafine particles by kitchen exhaust hoods: the effects of exhaust flow rates, particle size, and burner position. Sci Total Environ. 2012;432:350–6. https://doi.org/10.1016/j.scitotenv.2012.06.015.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Laumbach RJ, Cromar KR, Adamkiewicz G, Carlsten C, Charpin D, Chan WR, et al. Personal interventions for reducing exposure and risk for outdoor air pollution: an official American thoracic society workshop report. Ann Am Thorac Soc. 2021;18:1435–43. https://doi.org/10.1513/AnnalsATS.202104-421ST. [In eng]Sep

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lowther SD, Deng W, Fang Z, Booker D, Whyatt DJ, Wild O, et al. How efficiently can hepa purifiers remove priority fine and ultrafine particles from indoor air? Environ Int. 2020; 144: 106001. https://doi.org/10.1016/j.envint.2020.106001, https://www.sciencedirect.com/science/article/pii/S0160412020319565.

  26. Zhang Q, Gangupomu RH, Ramirez D, Zhu Y. Measurement of ultrafine particles and other air pollutants emitted by cooking activities. Int J Environ Res Public Health. 2010;7:1744–59. https://doi.org/10.3390/ijerph7041744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hagler GSW, Baldauf RW, Thoma ED, Long TR, Snow RF, Kinsey JS, et al. Ultrafine particles near a major roadway in Raleigh, North Carolina: downwind attenuation and correlation with traffic-related pollutants. Atmos Environ. 2009; 43: 1229–34. https://doi.org/10.1016/j.atmosenv.2008.11.024, https://www.sciencedirect.com/science/article/pii/S1352231008010832.

  28. Beckerman B, Jerrett M, Brook JR, Verma DK, Arain MA, Finkelstein MM. Correlation of nitrogen dioxide with other traffic pollutants near a major expressway. Atmos Environ. 2008;42:275–90. https://doi.org/10.1016/j.atmosenv.2007.09.042

    Article  ADS  CAS  Google Scholar 

  29. HEI Review Panel on Ultrafine Particles, Understanding the Health Effects of Ambient Ultrafine Particles. HEI Perspectives 3. 2013, Health Effects Institute: Boston, MA.

  30. Diener A, Mudu P. How can vegetation protect us from air pollution? a critical review on green spaces’ mitigation abilities for air-borne particles from a public health perspective - with implications for urban planning. Sci Total Environ. 2021;796:148605 https://doi.org/10.1016/j.scitotenv.2021.148605

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Chen C, Zhao Y, Zhao B. Emission rates of ultrafine and fine particles generated from human smoking of Chinese cigarettes. Atmos Environ. 2018;194:7–13. https://doi.org/10.1016/j.atmosenv.2018.09.014

    Article  ADS  CAS  Google Scholar 

  32. Neuberger M, Moshammer H, Schietz A. Exposure to ultrafine particles in hospitality venues with partial smoking bans. J Exposure Sci Environ Epidemiol. 2013;23:519–24. https://doi.org/10.1038/jes.2013.22

    Article  CAS  Google Scholar 

  33. Nyarku M, Buonanno G, Ofosu F, Jayaratne R, Mazaheri M, Morawska L. Schoolchildren’s personal exposure to ultrafine particles in and near Accra, Ghana. Environ Int. 2019;133:105223 https://doi.org/10.1016/j.envint.2019.105223. [In eng]Dec

    Article  PubMed  Google Scholar 

  34. Wallace, L, Ott W. Personal exposure to ultrafine particles. J Exposure Sci Environ Epidemiol. 2011; 21: 20–30. https://doi.org/10.1038/jes.2009.59, https://www.nature.com/articles/jes200959.pdf.

  35. Pañella P, Casas M, Donaire-Gonzalez D, Garcia-Esteban R, Robinson O, Valentín A, et al. Ultrafine particles and black carbon personal exposures in asthmatic and non-asthmatic children at school age. Indoor Air. 2017; 27: 891–99. https://doi.org/10.1111/ina.12382, http://spiral.imperial.ac.uk/bitstream/10044/1/46060/2/Pa-ella_et_al-2017-Indoor_Air.pdf.

  36. Mazaheri M, Lin W, Clifford S, Yue D, Zhai Y, Xu M, et al. Characteristics of school children’s personal exposure to ultrafine particles in Heshan, Pearl River Delta, China - a Pilot Study. Environ Int. 2019;132:105134 https://doi.org/10.1016/j.envint.2019.105134.

    Article  PubMed  Google Scholar 

  37. Wangchuk T, Mazaheri M, Clifford S, Dudzinska MR, He C, Buonanno G, et al. Children’s personal exposure to air pollution in Rural Villages in Bhutan. Environ Res. 2015; 140: 691–98. https://doi.org/10.1016/j.envres.2015.06.006, https://www.sciencedirect.com/science/article/pii/S0013935115001814.

  38. Gu J, Kraus U, Schneider A, Hampel R, Pitz M, Breitner S, et al. Personal day-time exposure to ultrafine particles in different microenvironments. Int J Hyg Environ Health. 2015;218:188–95. https://doi.org/10.1016/j.ijheh.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  39. Brokamp C, Wolfe C, Lingren T, Harley J, Ryan P. Decentralized and reproducible geocoding and characterization of community and environmental exposures for multisite studies. J Am Med Inf Assoc. 2018;25:309–14. https://doi.org/10.1093/jamia/ocx128.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the participants of this study for their time and dedication to complete personal air monitoring.

Funding

This work was supported by the National Institute of Environmental Health Sciences, Grant R33ES024713.

Author information

Authors and Affiliations

Authors

Contributions

AT: Data curation, Formal analysis, Visualization, Writing—original draft, Writing—review & editing. CW: Methodology, Resources, Software, Data curation, Writing—review & editing, Investigation, Project administration. PR: Methodology, Writing—review & editing, Conceptualization, Supervision, Funding acquisition.

Corresponding author

Correspondence to Ashley Turner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Study protocols were approved by Cincinnati Children’s Hospital Institutional Review Board (2017-1068).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, A., Wolfe, C. & Ryan, P.H. Personal exposure to ultrafine particles in multiple microenvironments among adolescents. J Expo Sci Environ Epidemiol (2024). https://doi.org/10.1038/s41370-023-00638-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41370-023-00638-7

Keywords

Search

Quick links