Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current knowledge of the degradation products of tattoo pigments by sunlight, laser irradiation and metabolism: a systematic review

Abstract

The popularity of tattooing has increased significantly over recent years. This has raised concerns about the safety of tattoo inks and their metabolites/degradation products. The photolytic and metabolic degradation of tattoo pigments may result in the formation of toxic compounds, with unforeseen health risks. A systematic literature review was undertaken to determine the current state of knowledge of tattoo pigments’ degradation products when irradiated with sunlight, laser light or metabolised. The review demonstrates that there is a lack of knowledge regarding tattoo pigment degradation/metabolism, with only eleven articles found pertaining to the photolysis of tattoo pigments and two articles on the metabolism of tattoo pigments. The limited research indicates that the photolysis of tattoo pigments could result in many toxic degradation products, including hydrogen cyanide and carcinogenic aromatic amines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example structures of the three primary pigment types.
Fig. 2: The literature search protocol.
Fig. 3: Reported Metabolites of Pigment Yellow 74.

Similar content being viewed by others

References

  1. Cui Y, Spann AP, Couch LH, Gopee NV, Evans FE, Churchwell MI, et al. Phtodeceomposition of pigment yellow 74, a pigment used in tattoo inks. Photochem Photobio Sci. 2004;80:175–84.

    Article  CAS  Google Scholar 

  2. Samadelli M, Melis M, Miccoli M, Vigl EE, Zink AR. Complete mapping of the tattoos of the 5300-year-old tyrolean iceman. J Cult Herit. 2015;16:753–8.

    Article  Google Scholar 

  3. Heywood W, Patrick K, Smith AM, Simpson JM, Pitts MK, Richters J, et al. Who gets tattoos? Demographic and behavioral correlates of ever being tattooed in a representative sample of men and women. Ann Epidemiol. 2012;22:51–6.

    Article  PubMed  Google Scholar 

  4. Makkai T, McAllister I. Prevalence of tattooing and body piercing in the Australian community. Commun Dis Intell Q Rep. 2001;25:67–72.

    CAS  PubMed  Google Scholar 

  5. Fell A. Tattoos in Australia: perceptions, trends and regrets. NSW, Australia: Mccrindle; 2021. Available from: https://mccrindle.com.au/insights/blog/tattoos-on-the-rise-among-aussies/.

  6. Laumann AE, Derick AJ. Tattoos and body piercings in the United States: a national data set. J Am Acad Dermatol. 2006;55:413–21.

    Article  PubMed  Google Scholar 

  7. Kluger N, Seité S, Taieb C. The prevalence of tattooing and motivations in five major countries over the world. J Eur Acad Dermatol Venereol. 2019;33:e484–6.

    Article  CAS  PubMed  Google Scholar 

  8. Laux P, Tralau T, Tentschert J, Blume A, Al Dahouk S, Bäumler W, et al. A medical-toxicological view of tattooing. Lancet. 2016;387:395–402.

    Article  PubMed  Google Scholar 

  9. Bauer EM, De Caro T, Tagliatesta P, Carbone M. Unraveling the real pigment composition of tattoo inks: the case of bi-components phthalocyanine-based greens. Dyes Pigm. 2019;167:225–35.

    Article  CAS  Google Scholar 

  10. Engel E, Santarelli F, Vasold R, Maisch T, Ulrich H, Prantl L, et al. Modern tattoos cause high concentrations of hazardous pigments in skin. Contact Derm. 2008;58:228–33.

    Article  Google Scholar 

  11. Council of Europe Committee of Ministers. Resolution Resap(2008)1. 2008. Available from: https://rm.coe.int/16805d3dc4.

  12. New Zealand Ministry of Health. Survey of selected samples of tattoo inks for the presence of heavy metals. Wellington, New Zealand; 2013. Available from: https://www.abc.net.au/cm/lb/5060760/data/nz-survey-of-selected-samples-of-tattoo-inks-for-the-presence-o-data.pdf.

  13. Bicca JF, Duquia RP, Breunig JdA, Souza PRMd, Almeida HLd, Jr. Tattoos on 18-year-old male adolescents-characteristics and associated factors. Bras Dermatol. 2013;88:925–8.

  14. Naga LI, Alster TS. Laser tattoo removal: an update. Am J Clin Dermatol. 2017;18:59–65.

    Article  PubMed  Google Scholar 

  15. Bernstein EF. Laser treatment of tattoos. Clin Dermatol. 2006;24:43–55.

    Article  PubMed  Google Scholar 

  16. Bäumler W, Eibler ET, Hohenleutner U, Sens B, Sauer J, Landthaler MQ. Switch laser and tattoo pigments: first results of the chemical and photophysical analysis of 41 compounds. Lasers Surg Med. 2000;26:13–21.

    Article  PubMed  Google Scholar 

  17. Engel E, Spannberger A, Vasold R, König B, Landthaler M, Bäumler W. Photochemical cleavage of a tattoo pigment by Uvb radiation or natural sunlight. J Dtsch Dermatol Ges. 2007;5:583–9.

    Article  PubMed  Google Scholar 

  18. Gaugler S. Analysis of bioactive compounds in tattoo inks before and after irradiation with sunlight using Hptlc and in situ detection with Vibrio Fischeri. Thesis, University of Hohenheim, Stuttgart; 2011.

  19. Schreiver I, Hutzler C, Laux P, Berlien H-P, Luch A. Formation of highly toxic hydrogen cyanide upon ruby laser irradiation of the tattoo pigment phthalocyanine blue. Sci Rep. 2015;5:12915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hering H, Sung AY, Roder N, Hutzler C, Berlien H-P, Laux P. Laser irradiation of organic tattoo pigments releases carcinogens with 3, 3′-dichlorobenzidine inducing DNA strand breaks in human skin cells. J Invest Dermatol. 2018;138:2687–90.

    Article  CAS  PubMed  Google Scholar 

  21. Schreiver I. Tattoo pigments: biodistribution and toxicity of corresponding laser induced decomposition products. Germany, Berlin: Free University of Berlin; 2018.

  22. Pagdin P. Personal communication with Phil Pagdin from The Tattoo Removal Co. concenring tattoo removal processes. 2020.

  23. Howard PC, Sams RL II, Bucher JR, Allaben WT. Phototoxicology and photocarcinogenesis at the USfood and Drug Administrationos National Center for Toxicological Research. J Food Drug Anal. 2002;10:4.

    Google Scholar 

  24. Wezel K. Examination of the behaviour of tattoo inks and pigments under the influence of light. Master thesis, Justus-Liebig University, Gießen, Germany; 2013.

  25. Cui Y, Churchwell MI, Couch LH, Doerge DR, Howard PC. Metabolism of pigment yellow 74 by rat and human microsomal proteins. Drug Metab Dispos. 2005;33:1459–65.

    Article  CAS  PubMed  Google Scholar 

  26. Hauri U, Hohl C. Photostability and breakdown products of pigments currently used in tattoo inks. Curr Probl Dermatol. 2015;48:164–9.

    Article  PubMed  Google Scholar 

  27. Bauer EM, Scibetta EV, Cecchetti D, Piccirillo S, Antonaroli S, Sennato S, et al. Treatments of a phthalocyanine‑based green ink for tattoo removal purposes: generation of toxic fragments and potentially harmful morphologies. Arch Toxicol. 2020.

  28. Vasold R, Naarmann N, Ulrich H, Fischer D, Könlg B, Landthaler M, et al. Tattoo pigments are cleaved by laser light—the chemical analysis in vitro provide evidence for hazardous compounds. Photochem Photobio Sci. 2004;80:185–90.

    Article  CAS  Google Scholar 

  29. Agnello M, Fontana M. Survey on European studies of the chemical characterisation of tattoo ink products and the measurement of potentially harmful ingredients. Tattooed Ski Health. 2015;48:142–51.

    Article  Google Scholar 

  30. Klügl I, Hiller K-A, Landthaler M, Bäumler W. Incidence of health problems associated with tattooed skin: a nation-wide survey in German-speaking countries. J Dermatol. 2010;221:43–50.

    Article  Google Scholar 

  31. Scheme NICNaA. Characterisation of tattoo inks used in Australia. Australia; 2016.

  32. Brady BG, Gold H, Leger EA, Leger MC. Self‐reported adverse tattoo reactions: a New York City Central Park study. Contact Derm. 2015;73:91–9.

    Article  Google Scholar 

  33. Kluger N, Koljonen V. Tattoos, inks, and cancer. Lancet Oncol. 2012;13:e161–8.

    Article  PubMed  Google Scholar 

  34. Polefka TG, Meyer TA, Agin PP, Bianchini RJ. Effects of solar radiation on the skin. J Cosmet Dermatol. 2012;11:134–43.

    Article  PubMed  Google Scholar 

  35. Garibyan L, Fisher DE. How sunlight causes melanoma. Curr Oncol Rep. 2010;12:319–26.

    Article  CAS  PubMed  Google Scholar 

  36. ATLAS. Atlas Stability Testing of Cosmetics. AMETEK; 2019. Available from: https://www.atlas-mts.com/applications/applications-overview/cosmetics.

  37. Yengi LG, Xiang Q, Pan J, Scatina J, Kao J, Ball SE, et al. Quantitation of cytochrome P450 Mrna levels in human skin. Anal Biochem. 2003;316:103–10.

    Article  CAS  PubMed  Google Scholar 

  38. Rolsted K, Kissmeyer A-M, Rist GM, Hansen SH. Evaluation of cytochrome P450 activity in vitro, using dermal and hepatic microsomes from four species and two keratinocyte cell lines in culture. Arch Dermatol Res. 2008;300:11–8.

    Article  CAS  PubMed  Google Scholar 

  39. Saeki M, Saito Y, Nagano M, Teshima R, Ozawa S, Sawada J-i. Mrna expression of multiple cytochrome P450 isozymes in four types of cultured skin cells. Int Arch Allergy Immunol. 2002;127:333–6.

    Article  CAS  PubMed  Google Scholar 

  40. Wiegand C, Hewitt NJ, Merk HF, Reisinger K. Dermal xenobiotic metabolism: a comparison between native human skin, four in vitro skin test systems and a liver system. Skin Pharmacol Physiol. 2014;27:263–75.

    Article  CAS  PubMed  Google Scholar 

  41. Luu-The V, Duche D, Ferraris C, Meunier J-R, Leclaire J, Labrie F. Expression profiles of phases 1 and 2 metabolizing enzymes in human skin and the reconstructed skin models Episkin™ and full thickness model from Episkin™. J Steroid Biochem Mol Biol. 2009;116:178–86.

    Article  CAS  PubMed  Google Scholar 

  42. Sepehri M, Sejersen T, Qvortrup K, Lerche CM, Serup J. Tattoo pigments are observed in the Kupffer cells of the liver indicating blood-borne distribution of tattoo ink. J Dermatol. 2017;233:86–93.

    Article  Google Scholar 

  43. Kluger N, Cohen-Valensi R, Nezri M. Black lymph nodes—and a colourful skin. Lancet. 2008;371:1214.

    Article  PubMed  Google Scholar 

  44. Friedman T, Westreich M, Mozes SN, Dorenbaum A, Herman O. Tattoo pigment in lymph nodes mimicking metastatic malignant melanoma. Plast Reconstr Surg. 2003;111:2120–2.

    PubMed  Google Scholar 

  45. Honegger MM, Hesseltine SM, Gross JD, Singer C, Cohen J-M. Tattoo pigment mimicking axillary lymph node calcifications on mammography. AJR Am J Roentgenol. 2004;183:831–2.

    Article  PubMed  Google Scholar 

  46. Lock EA, Reed CJ. Xenobiotic metabolizing enzymes of the kidney. Toxicol Pathol. 1998;26:18–25.

    Article  CAS  PubMed  Google Scholar 

  47. Haehner BD, Gorski JC, Vandenbranden M, Wrighton SA, Janardan SK, Watkins PB, et al. Bimodal distribution of renal cytochrome P450 3a activity in humans. Mol Pharm. 1996;50:52–9.

    CAS  Google Scholar 

  48. Park BK, Pirmohamed M, Kitteringham NR. The role of cytochrome P450 enzymes in hepatic and extrahepatic human drug toxicity. Clin Pharm Ther. 1995;68:385–424.

    CAS  Google Scholar 

  49. Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharm Toxicol. 2003;43:149–73.

    Article  CAS  Google Scholar 

  50. Zhao G, Allis JW. Kinetics of bromodichloromethane metabolism by cytochrome P450 isoenzymes in human liver microsomes. Chem Biol Interact. 2002;140:155–68.

    Article  CAS  PubMed  Google Scholar 

  51. Persson KP, Ekehed S, Otter C, Lutz EM, McPheat J, Masimirembwa CM, et al. Evaluation of human liver slices and reporter gene assays as systems for predicting the cytochrome P450 induction potential of drugs in vivo in humans. Pharm Res. 2006;23:56–69.

    Article  CAS  PubMed  Google Scholar 

  52. Chang TK, Chen J, Pillay V, Ho J-Y, Bandiera SM. Real-time polymerase chain reaction analysis of Cyp1b1 gene expression in human liver. Toxicol Sci. 2003;71:11–9.

    Article  CAS  PubMed  Google Scholar 

  53. Global Chemwatch Msds Database—Goldffx [Internet]. 2021. Available from: https://jr.chemwatch.net/chemwatch.web/.

  54. Benzonitrile [Internet]. European Chemicals Agency (ECHA). 2021. Available from: https://echa.europa.eu/brief-profile/-/briefprofile/100.002.596.

  55. ChemWatch. Material safety data sheet: benzonitrile. 2017 [updated Material Safety Data Sheet]. Available from: https://jr.chemwatch.net/chemwatch.web/home.

  56. Bonacker D, Stoiber T, Böhm KJ, Unger E, Degen GH, Thier R, et al. Chromosomal genotoxicity of nitrobenzene and benzonitrile. Arch Toxicol. 2004;78:49–57.

    Article  CAS  PubMed  Google Scholar 

  57. ChemWatch. Material safety data sheet: aniline. 2017 [updated Material Safety Data Sheet]. Available from: https://jr.chemwatch.net/chemwatch.web/home.

  58. Jenkins F, Robinson J, Gellatly J, Salmond G. The no-effect dose of aniline in human subjects and a comparison of aniline toxicity in man and the rat. Food Cosmet Toxicol. 1972;10:671–9.

    Article  CAS  PubMed  Google Scholar 

  59. Agency for Toxic Substances and Disease Registry. Medical management guidelines for aniline Atlanta. Toxicology and Human Health Sciences; 2014. Available from: https://www.atsdr.cdc.gov/MMG/MMG.asp?id=448&tid=79.

  60. Jacobson KH. Acute oral toxicity of mono-and di-alkyl ring-substituted derivatives of aniline. Toxicol Appl Pharm. 1972;22:153–4.

    Article  CAS  Google Scholar 

  61. ChemWatch. Material safety data sheet: 3,3’-dichlorobenzidine. 2017 [updated Material Safety Data Sheet]. Available from: https://jr.chemwatch.net/chemwatch.web/home.

  62. Gnomes R, Meek ME. Concise international chemical assessment document 2 3,3’-dichlorobenzidine. Geneva: World Health Organisation; 1998.

  63. Wang L, Yan J, Hardy W, Mosley C, Wang S, Yu H. Light-induced mutagenicity in salmonella Ta102 and genotoxicity/cytotoxicity in human T-cells by 3, 3′-dichlorobenzidine: a chemical used in the manufacture of dyes and pigments and in tattoo inks. J Toxicol. 2005;207:411–8.

    Article  CAS  Google Scholar 

  64. Zeilmaker M, Van Kranen H, Van Veen M, Janus J. Cancer risk assessment of azo dyes and aromatic amines from tattoo bands, folders of paper, toys, bed clothes, watch straps and ink. Netherlands; 2000. Available from: https://www.rivm.nl/bibliotheek/rapporten/601503019.html.

  65. Hauri U. Inks for tattoos and permanent make-up—pigments, preservatives, aromatic amines, polyaromatic hydrocarbons and nitrosamines. Basel, Switzerland; 2014. Available from: https://www.kantonslabor.bs.ch/dam/jcr:d12e5456-c71d-4e59-8f29-4a7d8c38d15d/Tattoo_PMU_2014_EN(UK).pdf.

  66. Sabbioni G, Hauri U. Carcinogenic tattoos?. Epidemiol Biostat Public Health. 2016;13:4.

    Google Scholar 

  67. Engel E, Vasold R, Santarelli F, Maisch T, Gopee NV, Howard PC, et al. Tattooing of skin results in transportation and light‐induced decomposition of tattoo pigments—a first quantification in vivo using a mouse model. Exp Dermatol. 2010;19:54–60.

    Article  CAS  PubMed  Google Scholar 

  68. Westland D. Design and apply laser tattoo removal treatments: student learning guide. Australian College of Laser Therapy; 2019.

  69. Poon KW, Dadour IR, McKinley AJ. In situ chemical analysis of modern organic tattooing inks and pigments by micro‐Raman spectroscopy. J Raman Spectrosc. 2008;39:1227–37.

    Article  CAS  Google Scholar 

  70. Chen H. Recent advances in azo dye degrading enzyme research. Curr Protein Pept Sci. 2006;7:101–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ortho-Toluidine. Chemical agents and related occupations: IARC monographs on the evaluation of carcinogenic risks to humans, volume 100F. Lyon, France: International Agency for Research on Cancer; 2012. p. 93–9.

  72. European Chemical Agency. 5-Nitro-O-Toluidine. 2021. Available from: https://echa.europa.eu/brief-profile/-/briefprofile/100.002.514.

Download references

Acknowledgements

The authors would Like to acknowledge Deborah Westland (CEO of the Australian College of Laser Therapy) for discussing the tattoo laser removal process. The authors would also like to acknowledge Associate Professor Ingo Koeper and Maximillian Mann from Flinders University (Bedford Park, South Australia) for their aid in translating articles written in German. The authors would like to thank the Australian Government Department of Education, Skills and Employment for providing an Australian Research Training Program Scholarship to TRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire E. Lenehan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, T.R., Ross, K.E., Alexander, U. et al. Current knowledge of the degradation products of tattoo pigments by sunlight, laser irradiation and metabolism: a systematic review. J Expo Sci Environ Epidemiol 32, 343–355 (2022). https://doi.org/10.1038/s41370-021-00364-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-021-00364-y

This article is cited by

Search

Quick links