Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of metabolic profiles associated with human exposure to perfluoroalkyl substances

Abstract

Recent epidemiological studies suggest that human exposure to perfluoroalkyl substances (PFASs) may be associated with type 2 diabetes and other metabolic phenotypes. To gain further insights regarding PFASs exposure in humans, we here aimed to characterize the associations between different PFASs and the metabolome. In this cross-sectional study, we investigated 965 individuals from Sweden (all aged 70 years, 50% women) sampled in 2001–2004. PFASs were analyzed in plasma using isotope-dilution ultra-pressure liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Non-target metabolomics profiling was performed in plasma using UPLC coupled to time-of-flight mass spectrometry (UPLC-QTOFMS) operated in positive electrospray mode. Multivariate linear regression analysis was used to investigate associations between circulating levels of PFASs and metabolites. In total, 15 metabolites, predominantly from lipid pathways, were associated with levels of PFASs following adjustment for sex, smoking, exercise habits, education, energy, and alcohol intake, after correction for multiple testing. Perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUnDA) were strongly associated with multiple glycerophosphocholines and fatty acids including docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). We also found that the different PFASs evaluated were associated with distinctive metabolic profiles, suggesting potentially different biochemical pathways in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang Z, DeWitt JC, Higgins CP, Cousins IT. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ Sci Technol. 2017;51:2508–18.

    Article  CAS  Google Scholar 

  2. OECD. Environment Directorate, risk reduction approaches for PFASs - a cross-country analysis. OECD environment, health and safety publications, Series on Risk Managment No 29. 2015;29:13–18.

  3. Eriksen KT, Raaschou-Nielsen O, McLaughlin JK, Lipworth L, Tjønneland A, Overvad K, et al. Association between plasma PFOA and PFOS levels and total cholesterol in a middle-aged Danish population. PLoS One. 2013;8:e56969.

    Article  CAS  Google Scholar 

  4. Skuladottir M, Ramel A, Rytter D, Haug LS, Sabaredzovic A, Bech BH, et al. Examining confounding by diet in the association between perfluoroalkyl acids and serum cholesterol in pregnancy. Environ Res. 2015;143:33–8. Part A

    Article  CAS  Google Scholar 

  5. Qin X-D, Qian Z, Vaughn MG, Huang J, Ward P, Zeng X-W, et al. Positive associations of serum perfluoroalkyl substances with uric acid and hyperuricemia in children from Taiwan. Environ Pollut. 2016;212:519–24.

    Article  CAS  Google Scholar 

  6. Gleason JA, Post GB, Fagliano JA. Associations of perfluorinated chemical serum concentrations and biomarkers of liver function and uric acid in the US population (NHANES), 2007–2010. Environ Res. 2015;136:8–14.

    Article  CAS  Google Scholar 

  7. Lind L, Zethelius B, Salihovic S, van Bavel B, Lind PM. Circulating levels of perfluoroalkyl substances and prevalent diabetes in the elderly. Diabetologia. 2014;57:473–9.

    Article  CAS  Google Scholar 

  8. Fletcher T, Galloway TS, Melzer D, Holcroft P, Cipelli R, Pilling LC, et al. Associations between PFOA, PFOS and changes in the expression of genes involved in cholesterol metabolism in humans. Environ Int. 2013;57-58:2–10.

    Article  CAS  Google Scholar 

  9. Starling AP, Engel SM, Whitworth KW, Richardson DB, Stuebe AM, Daniels JL, et al. Perfluoroalkyl substances and lipid concentrations in plasma during pregnancy among women in the Norwegian Mother and Child Cohort Study. Environ Int. 2014;62:104–12.

    Article  CAS  Google Scholar 

  10. Zeng X-W, Qian Z, Emo B, Vaughn M, Bao J, Qin X-D, et al. Association of polyfluoroalkyl chemical exposure with serum lipids in children. Sci Total Environ. 2015;512–513:364–70.

    Article  Google Scholar 

  11. Geiger SD, Xiao J, Ducatman A, Frisbee S, Innes K, Shankar A. The association between PFOA, PFOS and serum lipid levels in adolescents. Chemosphere. 2014;98:78–83.

    Article  CAS  Google Scholar 

  12. Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17:451–9.

    Article  CAS  Google Scholar 

  13. Huang SSY, Benskin JP, Veldhoen N, Chandramouli B, Butler H, Helbing CC, et al. A multi-omic approach to elucidate low-dose effects of xenobiotics in zebrafish (Danio rerio) larvae. Aquat Toxicol. 2017;182:102–12.

    Article  CAS  Google Scholar 

  14. Mattsson A, Kärrman A, Pinto R, Brunström B. Metabolic profiling of chicken embryos exposed to perfluorooctanoic acid (PFOA) and agonists to peroxisome proliferator-activated receptors. PLoS One. 2015;10:e0143780.

    Article  Google Scholar 

  15. Peng S, Yan L, Zhang J, Wang Z, Tian M, Shen H. An integrated metabonomics and transcriptomics approach to understanding metabolic pathway disturbance induced by perfluorooctanoic acid. J Pharm Biomed Anal. 2013;86:56–64.

    Article  CAS  Google Scholar 

  16. Kariuki M, Nagato E, Lankadurai B, Simpson A, Simpson M. Analysis of sub-lethal toxicity of perfluorooctane sulfonate (PFOS) to Daphnia magna using 1H nuclear magnetic resonance-based metabolomics. Metabolites. 2017;7:15.

    Article  Google Scholar 

  17. Lind L, Fors N, Hall J, Marttala K, Stenborg A. A comparison of three different methods to evaluate endothelium-dependent vasodilation in the elderly the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Arterioscler Thromb Vasc Biol. 2005;25:2368–75.

    Article  CAS  Google Scholar 

  18. Salihovic S, Kärrman A, Lindström G, Lind PM, Lind L, van Bavel B. A rapid method for the determination of perfluoroalkyl substances including structural isomers of perfluorooctane sulfonic acid in human serum using 96-well plates and column-switching ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2013;1305:164–70.

    Article  CAS  Google Scholar 

  19. Broeckling CD, Heuberger AL, Prince JA, Ingelsson E, Prenni JE. Assigning precursor–product ion relationships in indiscriminant MS/MS data from non-targeted metabolite profiling studies. Metabolomics. 2013;9:33–43.

    Article  CAS  Google Scholar 

  20. Ganna A, Fall T, Salihovic S, Lee W, Broeckling C, Kumar J, et al. Large-scale non-targeted metabolomic profiling in three human population-based studies. Metabolomics. 2015;12:1–13.

    Google Scholar 

  21. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007;3:211–21.

    Article  CAS  Google Scholar 

  22. Xia J, Wishart DS Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics. 2016;55:14–10.

  23. Kato K, Wong L-Y, Jia LT, Kuklenyik Z, Calafat AM. Trends in exposure to polyfluoroalkyl chemicals in the US population: 1999-2008. Environ Sci Technol. 2011;45:8037–45.

    Article  CAS  Google Scholar 

  24. Nøst TH, Vestergren R, Berg V, Nieboer E, Odland JØ, Sandanger TM. Repeated measurements of per- and polyfluoroalkyl substances (PFASs) from 1979 to 2007 in males from Northern Norway: assessing time trends, compound correlations and relations to age/birth cohort. Environ Int. 2014;67:43–53.

    Article  Google Scholar 

  25. Salihovic S, Kärrman A, Lind L, Lind PM, Lindström G, van Bavel B. Perfluoroalkyl substances (PFAS) including structural PFOS isomers in plasma from elderly men and women from Sweden: results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS). Environ Int. 2015;82:21–7.

    Article  CAS  Google Scholar 

  26. Minatoya M, Itoh S, Miyashita C, Araki A, Sasaki S, Miura R, et al. Association of prenatal exposure to perfluoroalkyl substances with cord blood adipokines and birth size: The Hokkaido Study on environment and children’s health. Environ Res. 2017;156:175–82.

    Article  CAS  Google Scholar 

  27. Halldorsson TI, Rytter D, Haug LS, Bech BH, Danielsen I, Becher G, et al. Prenatal exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective cohort study. Environ Health Perspect. 2012;120:668.

    Article  CAS  Google Scholar 

  28. Liu G, Dhana K, Furtado JD, Rood J, Zong G, Liang L, et al. Perfluoroalkyl substances and changes in body weight and resting metabolic rate in response to weight-loss diets: a prospective study. PLoS Med. 2018;15:e1002502.

    Article  Google Scholar 

  29. Yu N, Wei S, Li M, Yang J, Li K, Jin L, et al. Effects of perfluorooctanoic acid on metabolic profiles in brain and liver of mouse revealed by a high-throughput targeted metabolomics approach. Sci Rep. 2016;6:23963.

    Article  CAS  Google Scholar 

  30. Kuwabara M, Niwa K, Hisatome I, Nakagawa T, Roncal-Jimenez CA, Andres-Hernando A, et al. Asymptomatic hyperuricemia without comorbidities predicts cardiometabolic diseases: five-year Japanese Cohort Study. Hypertension. (Dallas, Tex: 1979). 2017;69:1036–44.

  31. Steenland K, Tinker S, Shankar A, Ducatman A. Association of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with uric acid among adults with elevated community exposure to PFOA. Environ Health Perspect. 2010;118:229–33.

    Article  CAS  Google Scholar 

  32. Costa G, Sartori S, Consonni D. Thirty years of medical surveillance in perfluooctanoic acid production workers. J Occup Environ Med. 2009;51:364–72.

    Article  CAS  Google Scholar 

  33. Sakr CJ, Leonard RC, Kreckmann KH, Slade MD, Cullen MR. Longitudinal study of serum lipids and liver enzymes in workers with occupational exposure to ammonium perfluorooctanoate. J Occup Environ Med. 2007;49:872–9.

    Article  CAS  Google Scholar 

  34. Guruge KS, Yeung LW, Yamanaka N, Miyazaki S, Lam PK, Giesy JP, et al. Gene expression profiles in rat liver treated with perfluorooctanoic acid (PFOA). Toxicol Sci. 2006;89:93–107.

    Article  CAS  Google Scholar 

  35. Wang J, Yan S, Zhang W, Zhang H, Dai J. Integrated proteomic and miRNA transcriptional analysis reveals the hepatotoxicity mechanism of PFNA exposure in mice. J Proteome Res. 2015;14:330–41.

    Article  CAS  Google Scholar 

  36. Wan HT, Zhao YG, Wei X, Hui KY, Giesy JP, Wong CKC. PFOS-induced hepatic steatosis, the mechanistic actions on β-oxidation and lipid transport. Biochim Et Biophys Acta (BBA) - General Subj. 2012;1820:1092–101.

    Article  CAS  Google Scholar 

  37. Chinetti G, Fruchart J-C, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res. 2000;49:497–505.

    Article  CAS  Google Scholar 

  38. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799–806.

    Article  CAS  Google Scholar 

  39. Nowak C, Salihovic S, Ganna A, Brandmaier S, Tukiainen T, Broeckling CD, et al. Effect of insulin resistance on monounsaturated fatty acid levels: a multi-cohort non-targeted metabolomics and Mendelian Randomization Study. PLoS Genet. 2016;12:e1006379.

    Article  Google Scholar 

  40. Zhang Y, Beesoon S, Zhu L, Martin JW. Biomonitoring of perfluoroalkyl acids in human urine and estimates of biological half-life. Environ Sci Technol. 2013;47:10619–27.

    Article  CAS  Google Scholar 

  41. Pawlosky RJ, Hibbeln JR, Lin Y, Goodson S, Riggs P, Sebring N, et al. Effects of beef- and fish-based diets on the kinetics of n−3 fatty acid metabolism in human subjects. Am J Clin Nutr. 2003;77:565–72.

    Article  CAS  Google Scholar 

  42. Schmitz G, Ruebsaamen K. Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis. 2010;208:10–8.

    Article  CAS  Google Scholar 

  43. Matsumoto T, Kobayashi T, Kamata K. Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr Med Chem. 2007;14:3209–20.

    Article  CAS  Google Scholar 

  44. Meikle PJ, Summers SA. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat Rev Endocrinol. 2017;13:79–91.

    Article  CAS  Google Scholar 

  45. Orešič M, Hyötyläinen T, Kotronen A, Gopalacharyulu P, Nygren H, Arola J, et al. Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids. Diabetologia. 2013;56:2266–74.

    Article  Google Scholar 

  46. Pietiläinen KH, Sysi-Aho M, Rissanen A, Seppanen-Laakso T, Yki-Jarvinen H, Kaprio J, et al. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects--a monozygotic twin study. PLoS One. 2007;2:e218.

    Article  Google Scholar 

  47. Li Y, Wang DD, Chiuve SE, Manson JE, Willett WC, Hu FB, et al. Dietary phosphatidylcholine intake and type 2 diabetes in men and women. Diabetes Care. 2015;38:e13–e4.

    Article  CAS  Google Scholar 

  48. Suvitaival T, Bondia-Pons I, Yetukuri L, Pöhö P, Nolan JJ, Hyötyläinen T, et al. Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men. Metabolism. 2018;78(Supplement C):1–12.

    Article  CAS  Google Scholar 

  49. Drogan D, Dunn WB, Lin W, Buijsse B, Schulze MB, Langenberg C, et al. Untargeted metabolic profiling identifies altered serum metabolites of type 2 diabetes mellitus in a prospective, nested case control study. Clin Chem. 2015;61:487–97.

    Article  CAS  Google Scholar 

  50. Barber MN, Risis S, Yang C, Meikle PJ, Staples M, Febbraio MA, et al. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS One. 2012;7:e41456.

    Article  CAS  Google Scholar 

  51. Wallace M, Morris C, O’Grada CM, Ryan M, Dillon ET, Coleman E, et al. Relationship between the lipidome, inflammatory markers and insulin resistance. Mol Biosyst. 2014;10:1586–95.

    Article  CAS  Google Scholar 

  52. Alshehry ZH, Mundra PA, Barlow CK, Mellett NA, Wong G, McConville MJ, et al. Plasma lipidomic profiles improve upon traditional risk factors for the prediction of cardiovascular events in type 2 diabetes. Circulation. 2016;134:1637–50.

Download references

Acknowledgements

This study received funding from the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) under grant numbers 2015-756 and 2013-478. Tove Fall has personal grants from the Göran Gustafsson Foundation and the Swedish Research Council (2015–03477). We greatly acknowledge the contribution of Bert van Bavel (Norwegian Institute for Water Research, Oslo, Norway) with regard to the analytical methodology for PFASs. We greatly acknowledge Erik Lampa (Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden) for statistical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Salihovic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salihovic, S., Fall, T., Ganna, A. et al. Identification of metabolic profiles associated with human exposure to perfluoroalkyl substances. J Expo Sci Environ Epidemiol 29, 196–205 (2019). https://doi.org/10.1038/s41370-018-0060-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-018-0060-y

Keywords:

This article is cited by

Search

Quick links