Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of the IL16 Asn1147Lys polymorphism with intravenous immunoglobulin resistance in Kawasaki disease

Abstract

Kawasaki disease (KD) is an acute, self-limited vasculitis, mainly affecting children younger than 5 years old, with accompanying fever and signs of mucocutaneous inflammation. Intravenous immunoglobulin (IVIG) is the standard treatment for KD; however, ~15% of patients are resistant to IVIG treatment. To identify protein coding genetic variants influencing IVIG resistance, we re-analyzed our previous genome-wide association study (GWAS) data from 296 patients with KD, including 101 IVIG non-responders and 195 IVIG responders. Five nonsynonymous SNPs (nsSNPs) in five immune-related genes, including a previously reported SAMD9L nsSNP (rs10488532; p.Val266Ile), were associated with IVIG non-response (odds ratio [OR] = 1.89–3.46, P = 0.0109–0.0035). In a replication study of the four newly-identified nsSNPs, only one in the interleukin 16 (IL16) gene (rs11556218, p.Asn1147Lys) showed a trend of association with IVIG non-response (OR = 1.54, P = 0.0078). The same IL16 nsSNP was more significantly associated with IVIG non-response in combined analysis of all data (OR = 1.64, P = 1.25 × 10−4). Furthermore, risk allele combination of the IL16 CT and SAMD9L TT nsSNP genotypes exhibited a very strong effect size (OR = 9.19, P = 3.63 × 10−4). These results implicate IL16 as involved in the mechanism of IVIG resistance in KD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation. 2004;110:2747–71.

    Article  Google Scholar 

  2. Kato H, Sugimura T, Akagi T, Sato N, Hashino K, Maeno Y, et al. Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation. 1996;94:1379–85.

    Article  CAS  Google Scholar 

  3. Wu MH, Chen HC, Yeh SJ, Lin MT, Huang SC, Huang SK. Prevalence and the long-term coronary risks of patients with Kawasaki disease in a general population <40 years: a national database study. Circ Cardiovasc Qual Outcomes. 2012;5:566–70.

    Article  Google Scholar 

  4. Durongpisitkul K, Soongswang J, Laohaprasitiporn D, Nana A, Prachuabmoh C, Kangkagate C. Immunoglobulin failure and retreatment in Kawasaki disease. Pediatr Cardiol. 2003;24:145–8.

    Article  CAS  Google Scholar 

  5. Burns JC, Shike H, Gordon JB, Malhotra A, Schoenwetter M, Kawasaki T. Sequelae of Kawasaki disease in adolescents and young adults. J Am Coll Cardiol. 1996;28:253–7.

    Article  CAS  Google Scholar 

  6. Nimmerjahn F, Ravetch JV. The antiinflammatory activity of IgG: the intravenous IgG paradox. J Exp Med. 2007;204:11–15.

    Article  CAS  Google Scholar 

  7. Kobayashi T, Inoue Y, Takeuchi K, Okada Y, Tamura K, Tomomasa T, et al. Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease. Circulation. 2006;113:2606–12.

    Article  Google Scholar 

  8. Egami K, Muta H, Ishii M, Suda K, Sugahara Y, Iemura M, et al. Prediction of resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease. J Pediatr. 2006;149:237–40.

    Article  CAS  Google Scholar 

  9. Sano T, Kurotobi S, Matsuzaki K, Yamamoto T, Maki I, Miki K, et al. Prediction of non-responsiveness to standard high-dose gamma-globulin therapy in patients with acute Kawasaki disease before starting initial treatment. Eur J Pediatr. 2007;166:131–7.

    Article  CAS  Google Scholar 

  10. Kuo HC, Hsu YW, Wu MS, Chien SC, Liu SF, Chang WC. Intravenous immunoglobulin, pharmacogenomics, and Kawasaki disease. J Microbiol Immunol Infect. 2016;49:1–7.

    Article  CAS  Google Scholar 

  11. Marchesi A, Tarissi de Jacobis I, Rigante D, Rimini A, Malorni W, Corsello G, et al. Kawasaki disease: guidelines of Italian Society of Pediatrics, part II—treatment of resistant forms and cardiovascular complications, follow-up, lifestyle and prevention of cardiovascular risks. Ital J Pediatr. 2018;44:103.

    Article  CAS  Google Scholar 

  12. Kim JJ, Yun SW, Yu JJ, Yoon KL, Lee KY, Kil HR, et al. Identification of SAMD9L as a susceptibility locus for intravenous immunoglobulin resistance in Kawasaki disease by genome-wide association analysis. Pharmacogenomics J. 2019. https://doi.org/10.1038/s41397-019-0085-1.

    Article  CAS  Google Scholar 

  13. McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation. 2017;135:e927–99.

    Article  Google Scholar 

  14. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  CAS  Google Scholar 

  15. Rumsaeng V, Cruikshank WW, Foster B, Prussin C, Kirshenbaum AS, Davis TA, et al. Human mast cells produce the CD4+ T lymphocyte chemoattractant factor, IL-16. J Immunol. 1997;159:2904–10.

    PubMed  CAS  Google Scholar 

  16. Chupp GL, Wright EA, Wu D, Vallen-Mashikian M, Cruikshank WW, Center DM, et al. Tissue and T cell distribution of precursor and mature IL-16. J Immunol. 1998;161:3114–9.

    PubMed  CAS  Google Scholar 

  17. Matsushita M, Hayashi T, Ando S, Sekigawa I, Iida N, Hashimoto H, et al. Changes of CD4/CD8 ratio and interleukin-16 in systemic lupus erythematosus. Clin Rheumatol. 2000;19:270–4.

    Article  CAS  Google Scholar 

  18. Koike M, Sekigawa I, Okada M, Matsumoto M, Iida N, Hashimoto H, et al. Relationship between CD4(+)/CD8(+) T cell ratio and T cell activation in multiple myeloma: reference to IL-16. Leuk Res. 2002;26:705–11.

    Article  CAS  Google Scholar 

  19. Keates AC, Castagliuolo I, Cruickshank WW, Qiu B, Arseneau KO, Brazer W, et al. Interleukin 16 is up-regulated in Crohn’s disease and participates in TNBS colitis in mice. Gastroenterology. 2000;119:972–82.

    Article  CAS  Google Scholar 

  20. Seegert D, Rosenstiel P, Pfahler H, Pfefferkorn P, Nikolaus S, Schreiber S. Increased expression of IL-16 in inflammatory bowel disease. Gut. 2001;48:326–32.

    Article  CAS  Google Scholar 

  21. Blaschke S, Schulz H, Schwarz G, Blaschke V, Müller GA, Reuss-Borst M. Interleukin 16 expression in relation to disease activity in rheumatoid arthritis. J Rheumatol. 2001;28:12–21.

    PubMed  CAS  Google Scholar 

  22. Rengarajan J, Tang B, Glimcher LH. NFATc2 and NFATc3 regulate T(H)2 differentiation and modulate TCR-responsiveness of naïve T(H)cells. Nat Immunol. 2002;3:48–54.

    Article  CAS  Google Scholar 

  23. Köck J, Kreher S, Lehmann K, Riedel R, Bardua M, Lischke T, et al. Nuclear factor of activated T cells regulates the expression of interleukin-4 in Th2 cells in an all-or-none fashion. J Biol Chem. 2014;289:26752–61.

    Article  CAS  Google Scholar 

  24. Tamada K, Shimozaki K, Chapoval AI, Zhu G, Sica G, Flies D, et al. Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nat Med. 2000;6:283–9.

    Article  CAS  Google Scholar 

  25. Burns JC, Franco A. The immunomodulatory effects of intravenous immunoglobulin therapy in Kawasaki disease. Exp Rev Clin Immunol. 2015;11:819–25.

    Article  CAS  Google Scholar 

  26. Lindquist ME, Hicar MD. B cells and antibodies in Kawasaki disease. Int J Mol Sci. 2019;20:1834.

    Article  CAS  Google Scholar 

  27. Kobayashi T, Saji T, Otani T, Takeuchi K, Nakamura T, Arakawa H, et al. Efficacy of immunoglobulin plus prednisolone for prevention of coronary artery abnormalities in severe Kawasaki disease (RAISE study): a randomised, open-label, blinded-endpoints trial. Lancet. 2012;379:1613–20.

    Article  CAS  Google Scholar 

  28. Miyata K, Kaneko T, Morikawa Y, Sakakibara H, Matsushima T, Misawa M, et al. Efficacy and safety of intravenous immunoglobulin plus prednisolone therapy in patients with Kawasaki disease (Post RAISE): a multicentre, prospective cohort study. Lancet Child Adolesc Health. 2018;2:855–62.

    Article  Google Scholar 

  29. Weng KP, Hsieh KS, Ho TY, Huang SH, Lai CR, Chiu YT, et al. IL-1B polymorphism in association with initial intravenous immunoglobulin treatment failure in Taiwanese children with Kawasaki disease. Circ J. 2010;74:544–51.

    Article  CAS  Google Scholar 

  30. Shrestha S, Wiener HW, Olson AK, Edberg JC, Bowles NE, Patel H, et al. Functional FCGR2B gene variants influence intravenous immunoglobulin response in patients with Kawasaki disease. J Allergy Clin Immunol. 2011;128:677–80.

    Article  CAS  Google Scholar 

  31. Shrestha S, Wiener H, Shendre A, Kaslow RA, Wu J, Olson A, et al. Role of activating FcγR gene polymorphisms in Kawasaki disease susceptibility and intravenous immunoglobulin response. Circ Cardiovasc Genet. 2012;5:309–16.

    Article  CAS  Google Scholar 

  32. Makowsky R, Wiener HW, Ptacek TS, Silva M, Shendre A, Edberg JC, et al. FcγR gene copy number in Kawasaki disease and intravenous immunoglobulin treatment response. Pharmacogenetics Genom. 2013;23:455–62.

    Article  CAS  Google Scholar 

  33. Portman MA, Wiener HW, Silva M, Shendre A, Shrestha S. DC-SIGN gene promoter variants and IVIG treatment response in Kawasaki disease. Pediatr Rheumatol Online J. 2013;11:32.

    Article  Google Scholar 

  34. Kuo HC, Wong HS, Chang WP, Chen BK, Wu MS, Yang KD, et al. Prediction for intravenous immunoglobulin resistance by using weighted genetic risk score identified from genome-wide association study in Kawasaki disease. Circ Cardiovasc Genet. 2017;10:e001625.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all patients and their families for participating in this study. This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (2019R1F1A1061238).

Korean Kawasaki Disease Genetics Consortium

Jeong Jin Yu3, In-Sook Park3, Soo-Jong Hong3, Kwi-Joo Kim3, Jong-Keuk Lee1, Jae-Jung Kim1, Young Mi Hong12, Sejung Sohn12, Gi Young Jang11, Kee Soo Ha11, Hyo-Kyoung Nam11, Jung-Hye Byeon11, Sin Weon Yun2, Myung-Ki Han8, Hyun Ok Jun8, Kyung-Yil Lee5, Ja-Young Hwang5, Jung-Woo Rhim5, Min Seob Song9, Hyoung Doo Lee10, Dong Soo Kim13, Kyung Lim Yoon4, Hong-Ryang Kil6, Gi Beom Kim7, Jae-Moo Lee14, Jong-Duk Kim14

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Jong-Keuk Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Members of the Korean Kawasaki Disease Genetics Consortium are listed below Acknowledgements.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HJ., Kim, JJ., Yun, S.W. et al. Association of the IL16 Asn1147Lys polymorphism with intravenous immunoglobulin resistance in Kawasaki disease. J Hum Genet 65, 421–426 (2020). https://doi.org/10.1038/s10038-020-0721-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-0721-2

This article is cited by

Search

Quick links