Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The EGFR-HER2 module: a stem cell approach to understanding a prime target and driver of solid tumors

Abstract

The epidermal growth factor receptor (EGFR) and a coreceptor denoted HER2/ERBB2 are frequently overexpressed or mutated in solid tumors, such as carcinomas and gliomas. In line with driver roles, cancer drugs intercepting EGFR or HER2 currently outnumber therapies targeting other hubs of signal transduction. To explain the roles for EGFR and HER2 as prime drivers and targets, we take lessons from invertebrates and refer to homeostatic regulation of several mammalian tissues. The model we infer ascribes to the EGFR-HER2 module pivotal functions in rapid clonal expansion of progenitors called transient amplifying cells (TACs). Accordingly, TACs of tumors suffer from replication stress, and hence accumulate mutations. In addition, several lines of evidence propose that in response to EGF and related mitogens, TACs might undergo dedifferentiation into tissue stem cells, which might enable entry of oncogenic mutations into the stem cell compartment. According to this view, antibodies or kinase inhibitors targeting EGFR-HER2 effectively retard some solid tumors because they arrest mutation-enriched TACs and possibly inhibit their dedifferentiation. Deeper understanding of the EGFR-HER2 module and relations between cancer stem cells and TACs will enhance our ability to control a broad spectrum of human malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Pellettieri J, Sanchez Alvarado A . Cell turnover and adult tissue homeostasis: from humans to planarians. Annu Rev Genet 2007; 41: 83–105.

    CAS  PubMed  Google Scholar 

  2. Tomasetti C, Vogelstein B . Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2015; 347: 78–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Blanpain C, Horsley V, Fuchs E . Epithelial stem cells: turning over new leaves. Cell 2007; 128: 445–458.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hsu YC, Li L, Fuchs E . Emerging interactions between skin stem cells and their niches. Nat Med 2014; 20: 847–856.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schneider MR, Schmidt-Ullrich R, Paus R . The hair follicle as a dynamic miniorgan. Curr Biol 2009; 19: R132–142.

    CAS  PubMed  Google Scholar 

  6. Tashiro A, Sandler VM, Toni N, Zhao C, Gage FH . NMDA-receptor-mediated cell-specific integration of new neurons in adult dentate gyrus. Nature 2006; 442: 929–933.

    CAS  PubMed  Google Scholar 

  7. Hennighausen L, Robinson GW . Information networks in the mammary gland. Nat Rev Mol Cell Biol 2005; 6: 715–725.

    CAS  PubMed  Google Scholar 

  8. Candi E, Schmidt R, Melino G . The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 2005; 6: 328–340.

    CAS  PubMed  Google Scholar 

  9. Kroemer G, Galluzzi L, Kepp O, Zitvogel L . Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31: 51–72.

    CAS  PubMed  Google Scholar 

  10. Grompe M . Liver stem cells, where art thou? Cell Stem Cell 2014; 15: 257–258.

    CAS  PubMed  Google Scholar 

  11. Dor Y, Brown J, Martinez OI, Melton DA . Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004; 429: 41–46.

    CAS  PubMed  Google Scholar 

  12. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008; 135: 1118–1129.

    CAS  PubMed  Google Scholar 

  13. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449: 1003–1007.

    CAS  PubMed  Google Scholar 

  14. Doupe DP, Jones PH . Cycling progenitors maintain epithelia while diverse cell types contribute to repair. BioEssays 2013; 35: 443–451.

    CAS  PubMed  Google Scholar 

  15. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 2011; 469: 415–418.

    CAS  PubMed  Google Scholar 

  16. Lim RW, Hauschka SD . A rapid decrease in epidermal growth factor-binding capacity accompanies the terminal differentiation of mouse myoblasts in vitro. J Cell Biol 1984; 98: 739–747.

    CAS  PubMed  Google Scholar 

  17. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  18. Gupta BP, Hanna-Rose W, Sternberg PW . Morphogenesis of the vulva and the vulval–uterine connection. WormBook 2012. 1–20.

  19. Sulston JE, White JG . Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans. Dev Biol 1980; 78: 577–597.

    CAS  PubMed  Google Scholar 

  20. Schweitzer R, Shilo BZ . A thousand and one roles for the Drosophila EGF receptor. Trends Genet 1997; 13: 191–196.

    CAS  PubMed  Google Scholar 

  21. Yasugi T, Sugie A, Umetsu D, Tabata T . Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe. Development 2010; 137: 3193–3203.

    CAS  PubMed  Google Scholar 

  22. Morante J, Desplan C . The color-vision circuit in the medulla of Drosophila. Curr Biol 2008; 18: 553–565.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kai T, Spradling A . Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature 2004; 428: 564–569.

    CAS  PubMed  Google Scholar 

  24. Klapper LN, Glathe S, Vaisman N, Hynes NE, Andrews GC, Sela M et al. The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc Natl Acad Sci USA 1999; 96: 4995–5000.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA . ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci USA 2010; 107: 7692–7697.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Goldman R, Levy RB, Peles E, Yarden Y . Heterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: a mechanism for receptor transregulation. Biochemistry 1990; 29: 11024–11028.

    CAS  PubMed  Google Scholar 

  27. Yarden Y, Schlessinger J . Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry 1987; 26: 1443–1451.

    CAS  PubMed  Google Scholar 

  28. Wada T, Qian XL, Greene MI . Intermolecular association of the p185neu protein and EGF receptor modulates EGF receptor function. Cell 1990; 61: 1339–1347.

    CAS  PubMed  Google Scholar 

  29. Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TP, Leahy DJ et al. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell 2003; 12: 541–552.

    CAS  PubMed  Google Scholar 

  30. Kovacs E, Zorn JA, Huang Y, Barros T, Kuriyan J . A structural perspective on the regulation of the epidermal growth factor receptor. Annu Rev Biochem 2015; 84: 739–764.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wallasch C, Weiss FU, Niederfellner G, Jallal B, Issing W, Ullrich A . Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J 1995; 14: 4267–4275.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Avraham R, Yarden Y . Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol 2011; 12: 104–117.

    CAS  PubMed  Google Scholar 

  33. Hynes NE, MacDonald G . ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 2009; 21: 177–184.

    CAS  PubMed  Google Scholar 

  34. Amit I, Citri A, Shay T, Lu Y, Katz M, Zhang F et al. A module of negative feedback regulators defines growth factor signaling. Nat Genet 2007; 39: 503–512.

    CAS  PubMed  Google Scholar 

  35. Goh LK, Huang F, Kim W, Gygi S, Sorkin A . Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor. J Cell Biol 2010; 189: 871–883.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 1999; 4: 1029–1040.

    CAS  PubMed  Google Scholar 

  37. Zwang Y, Yarden Y . Systems biology of growth factor-induced receptor endocytosis. Traffic 2009; 10: 349–363.

    CAS  PubMed  Google Scholar 

  38. Haglund K, Dikic I . The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci 2012; 125: 265–275.

    CAS  PubMed  Google Scholar 

  39. Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 1996; 15: 2452–2467.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Baulida J, Kraus MH, Alimandi M, Di Fiore PP, Carpenter G . All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J Biol Chem 1996; 271: 5251–5257.

    CAS  PubMed  Google Scholar 

  41. Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 1996; 16: 5276–5287.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Graus-Porta D, Beerli RR, Daly JM, Hynes NE . ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 1997; 16: 1647–1655.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schneider MR, Werner S, Paus R, Wolf E . Beyond wavy hairs: the epidermal growth factor receptor and its ligands in skin biology and pathology. Am J Pathol 2008; 173: 14–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mann GB, Fowler KJ, Gabriel A, Nice EC, Williams RL, Dunn AR . Mice with a null mutation of the TGF alpha gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell 1993; 73: 249–261.

    CAS  PubMed  Google Scholar 

  45. Fowler KJ, Walker F, Alexander W, Hibbs ML, Nice EC, Bohmer RM et al. A mutation in the epidermal growth factor receptor in waved-2 mice has a profound effect on receptor biochemistry that results in impaired lactation. Proc Natl Acad Sci USA 1995; 92: 1465–1469.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Schneider MR . The magnificient seven: epidermal growth factor receptor ligands. Semin Cell Dev Biol 2014; 28: 1.

    CAS  PubMed  Google Scholar 

  47. Luetteke NC, Qiu TH, Peiffer RL, Oliver P, Smithies O, Lee DC . TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell 1993; 73: 263–278.

    CAS  PubMed  Google Scholar 

  48. Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 1999; 126: 2739–2750.

    CAS  PubMed  Google Scholar 

  49. Troyer KL, Luetteke NC, Saxon ML, Qiu TH, Xian CJ, Lee DC . Growth retardation, duodenal lesions, and aberrant ileum architecture in triple null mice lacking EGF, amphiregulin, and TGF-alpha. Gastroenterology 2001; 121: 68–78.

    CAS  PubMed  Google Scholar 

  50. Sibilia M, Wagner EF . Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 1995; 269: 234–238.

    CAS  PubMed  Google Scholar 

  51. Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 1995; vol. 269: 230–234.

    Google Scholar 

  52. Miettinen PJ, Berger JE, Meneses J, Phung Y, Pedersen RA, Werb Z et al. Nature 1995; 376: 337–341.

    CAS  PubMed  Google Scholar 

  53. Sun Y, Goderie SK, Temple S . Asymmetric distribution of EGFR receptor during mitosis generates diverse CNS progenitor cells. Neuron 2005; 45: 873–886.

    CAS  PubMed  Google Scholar 

  54. Sibilia M, Kroismayr R, Lichtenberger BM, Natarajan A, Hecking M, Holcmann M . The epidermal growth factor receptor: from development to tumorigenesis. Differentiation 2007; 75: 770–787.

    CAS  PubMed  Google Scholar 

  55. Meyer D, Birchmeier C . Multiple essential functions of neuregulin in development. Nature 1995; 378: 386–390.

    CAS  PubMed  Google Scholar 

  56. Lee KF, Simon H, Chen H, Bates B, Hung MC, Hauser C . Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 1995; 378: 394–398.

    CAS  PubMed  Google Scholar 

  57. Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 1995; 378: 390–394.

    CAS  PubMed  Google Scholar 

  58. Erickson SL, O'Shea KS, Ghaboosi N, Loverro L, Frantz G, Bauer M et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development 1997; 124: 4999–5011.

    CAS  PubMed  Google Scholar 

  59. Riethmacher D, Sonnenberg-Riethmacher E, Brinkmann V, Yamaai T, Lewin GR, Birchmeier C . Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 1997; 389: 725–730.

    CAS  PubMed  Google Scholar 

  60. Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 2004; 304: 700–703.

    CAS  PubMed  Google Scholar 

  61. Kitade M, Factor VM, Andersen JB, Tomokuni A, Kaji K, Akita H et al. Specific fate decisions in adult hepatic progenitor cells driven by MET and EGFR signaling. Genes Dev 2013; 27: 1706–1717.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Desai TJ, Brownfield DG, Krasnow MA . Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 2014; 507: 190–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Krampera M, Pasini A, Rigo A, Scupoli MT, Tecchio C, Malpeli G et al. HB-EGF/HER-1 signaling in bone marrow mesenchymal stem cells: inducing cell expansion and reversibly preventing multilineage differentiation. Blood 2005; 106: 59–66.

    CAS  PubMed  Google Scholar 

  64. Genetos DC, Rao RR, Vidal MA . Betacellulin inhibits osteogenic differentiation and stimulates proliferation through HIF-1alpha. Cell Tissue Res 2010; 340: 81–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tamama K, Fan VH, Griffith LG, Blair HC, Wells A . Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells 2006; 24: 686–695.

    CAS  PubMed  Google Scholar 

  66. Zhu J, Shimizu E, Zhang X, Partridge NC, Qin L . EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and Osterix. J Cell Biochem 2011; 112: 1749–1760.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Doan PL, Himburg HA, Helms K, Russell JL, Fixsen E, Quarmyne M et al. Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat Med 2013; 19: 295–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nieto-Sampedro M, Gomez-Pinilla F, Knauer DJ, Broderick JT . Epidermal growth factor receptor immunoreactivity in rat brain astrocytes. Response to injury. Neurosci Lett 1988; 91: 276–282.

    CAS  PubMed  Google Scholar 

  69. Aguirre A, Dupree JL, Mangin JM, Gallo V . A functional role for EGFR signaling in myelination and remyelination. Nat Neurosci 2007; 10: 990–1002.

    CAS  PubMed  Google Scholar 

  70. Iyer R, Thames HD, Tealer JR, Mason KA, Evans SC . Effect of reduced EGFR function on the radiosensitivity and proliferative capacity of mouse jejunal crypt clonogens. Radiother Oncol 2004; 72: 283–289.

    CAS  PubMed  Google Scholar 

  71. Clevers H, Batlle E . SnapShot: the intestinal crypt. Cell 2013; 152: e1192.

    Google Scholar 

  72. Gur G, Rubin C, Katz M, Amit I, Citri A, Nilsson J et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J 2004; 23: 3270–3281.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Laederich MB, Funes-Duran M, Yen L, Ingalla E, Wu X, Carraway KL III . The leucine-rich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J Biol Chem 2004; 279: 47050–47056.

    CAS  PubMed  Google Scholar 

  74. Wong VW, Stange DE, Page ME, Buczacki S, Wabik A, Itami S . Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat Cell Biol 2012; 14: 401–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Powell AE, Wang Y, Li Y, Poulin EJ, Means AL, Washington MK et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 2012; 149: 146–158.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Marchbank T, Goodlad RA, Lee CY, Playford RJ . Luminal epidermal growth factor is trophic to the small intestine of parenterally fed rats. Clin Sci 1995; 89: 117–120.

    CAS  Google Scholar 

  77. Bashir O, Fitzgerald AJ, Berlanga-Acosta J, Playford RJ, Goodlad RA . Effect of epidermal growth factor administration on intestinal cell proliferation, crypt fission and polyp formation in multiple intestinal neoplasia (Min) mice. Clin Sci 2003; 105: 323–330.

    CAS  Google Scholar 

  78. Dahlhoff M, Horst D, Gerhard M, Kolligs FT, Wolf E, Schneider MR . Betacellulin stimulates growth of the mouse intestinal epithelium and increases adenoma multiplicity in Apc+/Min mice. FEBS Lett 2008; 582: 2911–2915.

    CAS  PubMed  Google Scholar 

  79. van Es JH, Sato T, van de Wetering M, Lyubimova A, Nee AN, Gregorieff A et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 2012; 14: 1099–1104.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Fuentealba LC, Obernier K, Alvarez-Buylla A . Adult neural stem cells bridge their niche. Cell Stem Cell 2012; 10: 698–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Tong CK, Alvarez-Buylla A . SnapShot: adult neurogenesis in the V-SVZ. Neuron 2014; 81: e221.

    Google Scholar 

  82. Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, Alvarez-Buylla A . Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. Proc Natl Acad Sci USA 2013; 110: E1045–E1054.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A . EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 2002; 36: 1021–1034.

    CAS  PubMed  Google Scholar 

  84. Ninomiya M, Yamashita T, Araki N, Okano H, Sawamoto K . Enhanced neurogenesis in the ischemic striatum following EGF-induced expansion of transit-amplifying cells in the subventricular zone. Neurosci Lett 2006; 403: 63–67.

    CAS  PubMed  Google Scholar 

  85. Pastrana E, Cheng LC, Doetsch F . Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci USA 2009; 106: 6387–6392.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Aguirre A, Rubio ME, Gallo V . Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 2010; 467: 323–327.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Gonzalez-Perez O, Alvarez-Buylla A . Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Rev 2011; 67: 147–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Galvez-Contreras AY, Quinones-Hinojosa A, Gonzalez-Perez O . The role of EGFR and ErbB family related proteins in the oligodendrocyte specification in germinal niches of the adult mammalian brain. Front Cell Neurosci 2013; 7: 258.

    PubMed  PubMed Central  Google Scholar 

  89. Gomez-Gaviro MV, Scott CE, Sesay AK, Matheu A, Booth S, Galichet C et al. Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis. Proc Natl Acad Sci USA 2012; 109: 1317–1322.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lecona E, Fernandez-Capetillo O . Replication stress and cancer: it takes two to tango. Exp Cell Res 2014; 329: 26–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H et al. Amplification and overexpression of the EGF receptor gene in primary human glioblastomas. J Cell Sci Suppl 1985; 3: 161–172.

    CAS  PubMed  Google Scholar 

  92. Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B . Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 1987; 84: 6899–6903.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jeuken J, Sijben A, Alenda C, Rijntjes J, Dekkers M, Boots-Sprenger S et al. Robust detection of EGFR copy number changes and EGFR variant III: technical aspects and relevance for glioma diagnostics. Brain Pathol 2009; 19: 661–671.

    PubMed  PubMed Central  Google Scholar 

  94. Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP . Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 1991; 51: 2164–2172.

    CAS  PubMed  Google Scholar 

  95. Lee JC, Vivanco I, Beroukhim R, Huang JH, Feng WL, DeBiasi RM et al. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. PLoS Med 2006; 3: e485.

    PubMed  PubMed Central  Google Scholar 

  96. Sugawa N, Ekstrand AJ, James CD, Collins VP . Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci USA 1990; 87: 8602–8606.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA 1992; 89: 2965–2969.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ekstrand AJ, Sugawa N, James CD, Collins VP . Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci USA 1992; 89: 4309–4313.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang PH, Xu AM, White FM . Oncogenic EGFR signaling networks in glioma. Sci Signal 2009; 2: re6.

    PubMed  Google Scholar 

  100. Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK et al. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA 2007; 104: 12867–12872.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Pillay V, Allaf L, Wilding AL, Donoghue JF, Court NW, Greenall SA et al. The plasticity of oncogene addiction: implications for targeted therapies directed to receptor tyrosine kinases. Neoplasia 2009; 11: 442.

    Google Scholar 

  102. Zeineldin R, Ning Y, Hudson LG . The constitutive activity of epidermal growth factor receptor vIII leads to activation and differential trafficking of wild-type epidermal growth factor receptor and erbB2. J Histochem Cytochem 2010; 58: 529–541.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Nagane M, Coufal F, Lin H, Bogler O, Cavenee WK, Huang HJ . A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res 1996; 56: 5079–5086.

    CAS  PubMed  Google Scholar 

  104. Frederick L, Wang XY, Eley G, James CD . Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 2000; 60: 1383–1387.

    CAS  PubMed  Google Scholar 

  105. Kuan CT, Wikstrand CJ, Bigner DD . EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr Relat Cancer 2001; 8: 83–96.

    CAS  PubMed  Google Scholar 

  106. Pines G, Huang PH, Zwang Y, White FM, Yarden Y . EGFRvIV: a previously uncharacterized oncogenic mutant reveals a kinase autoinhibitory mechanism. Oncogene 2010; 29: 5850–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 2129–2139.

    CAS  PubMed  Google Scholar 

  108. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497–1500.

    CAS  PubMed  Google Scholar 

  109. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I et al. EGF receptor gene mutations are common in lung cancers from 'never smokers' and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 2004; 101: 13306–13311.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Riely GJ, Politi KA, Miller VA, Pao W . Update on epidermal growth factor receptor mutations in non-small cell lung cancer. Clin Cancer Res 2006; 12: 7232–7241.

    CAS  PubMed  Google Scholar 

  111. Teng YH, Tan WJ, Thike AA, Cheok PY, Tse GM, Wong NS et al. Mutations in the epidermal growth factor receptor (EGFR) gene in triple negative breast cancer: possible implications for targeted therapy. Breast Cancer Res 2011; 13: R35.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Greulich H, Chen TH, Feng W, Janne PA, Alvarez JV, Zappaterra M et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2005; 2: e313.

    PubMed  PubMed Central  Google Scholar 

  113. Sharma SV, Bell DW, Settleman J, Haber DA . Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7: 169–181.

    CAS  PubMed  Google Scholar 

  114. Yun CH, Boggon TJ, Li Y, Woo MS, Greulich H, Meyerson M et al. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 2007; 11: 217–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA 2008; 105: 2070–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Politi K, Zakowski MF, Fan PD, Schonfeld EA, Pao W, Varmus HE . Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev 2006; 20: 1496–1510.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ji H, Li D, Chen L, Shimamura T, Kobayashi S, McNamara K et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 2006; 9: 485–495.

    CAS  PubMed  Google Scholar 

  118. Regales L, Balak MN, Gong Y, Politi K, Sawai A, Le C et al. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors. PLoS One 2007; 2: e810.

    PubMed  PubMed Central  Google Scholar 

  119. Li D, Shimamura T, Ji H, Chen L, Haringsma HJ, McNamara K et al. Bronchial and peripheral murine lung carcinomas induced by T790M-L858R mutant EGFR respond to HKI-272 and rapamycin combination therapy. Cancer Cell 2007; 12: 81–93.

    CAS  PubMed  Google Scholar 

  120. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005; 2: e73.

    PubMed  PubMed Central  Google Scholar 

  121. Kwak EL, Jankowski J, Thayer SP, Lauwers GY, Brannigan BW, Harris PL et al. Epidermal growth factor receptor kinase domain mutations in esophageal and pancreatic adenocarcinomas. Clin Cancer Res 2006; 12: 4283–4287.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Bell DW, Gore I, Okimoto RA, Godin-Heymann N, Sordella R, Mulloy R et al. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet 2005; 37: 1315–1316.

    CAS  PubMed  Google Scholar 

  123. Heinmoller P, Gross C, Beyser K, Schmidtgen C, Maass G, Pedrocchi M et al. HER2 status in non-small cell lung cancer: results from patient screening for enrollment to a phase II study of herceptin. Clin Cancer Res 2003; 9: 5238–5243.

    PubMed  Google Scholar 

  124. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.

    CAS  PubMed  Google Scholar 

  125. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.

    CAS  PubMed  Google Scholar 

  126. Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN . The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 2009; 14: 320–368.

    CAS  PubMed  Google Scholar 

  127. Yan M, Schwaederle M, Arguello D, Millis SZ, Gatalica Z, Kurzrock R . HER2 expression status in diverse cancers: review of results from 37,992 patients. Cancer Metast Rev 2015; 34: 157–164.

    CAS  Google Scholar 

  128. Hechtman JF, Polydorides AD . HER2/neu gene amplification and protein overexpression in gastric and gastroesophageal junction adenocarcinoma: a review of histopathology, diagnostic testing, and clinical implications. Arch Pathol Lab Med 2012; 136: 691–697.

    PubMed  Google Scholar 

  129. Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF III, Hynes NE . The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci USA 2003; 100: 8933–8938.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Jaiswal BS, Kljavin NM, Stawiski EW, Chan E, Parikh C, Durinck S et al. Oncogenic ERBB3 mutations in human cancers. Cancer cell 2013; 23: 603–617.

    CAS  PubMed  Google Scholar 

  131. Jeong EG, Soung YH, Lee JW, Lee SH, Nam SW, Lee JY et al. ERBB3 kinase domain mutations are rare in lung, breast and colon carcinomas. Int J Cancer 2006; 119: 2986–2987.

    CAS  PubMed  Google Scholar 

  132. Prickett TD, Agrawal NS, Wei X, Yates KE, Lin JC, Wunderlich JR et al. Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nat Genet 2009; 41: 1127–1132.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Soung YH, Lee JW, Kim SY, Wang YP, Jo KH, Moon SW . Somatic mutations of the ERBB4 kinase domain in human cancers. Int J Cancer 2006; 118: 1426–1429.

    CAS  PubMed  Google Scholar 

  134. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008; 455: 1069–1075.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Kurppa K, Elenius K . Mutated ERBB4: a novel drug target in metastatic melanoma? Pigment Cell Melanoma Res 2009; 22: 708–710.

    PubMed  Google Scholar 

  136. Sporn MB, Todaro GJ . Autocrine secretion and malignant transformation of cells. N Engl J Med 1980; 303: 878–880.

    CAS  PubMed  Google Scholar 

  137. Schulze A, Lehmann K, Jefferies HB, McMahon M, Downward J . Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev 2001; 15: 981–994.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Singh AB, Harris RC . Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 2005; 17: 1183–1193.

    CAS  PubMed  Google Scholar 

  139. Kodama T, Ikeda E, Okada A, Ohtsuka T, Shimoda M, Shiomi T et al. ADAM12 is selectively overexpressed in human glioblastomas and is associated with glioblastoma cell proliferation and shedding of heparin-binding epidermal growth factor. Am J Pathol 2004; 165: 1743–1753.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Witsch E, Sela M, Yarden Y . Roles for growth factors in cancer progression. Physiology (Bethesda, MD) 2010; 25: 85–101.

    CAS  Google Scholar 

  141. Berasain C, Avila MA . Amphiregulin. Semin Cell Dev Biol 2014; 28C: 31–41.

    Google Scholar 

  142. Sternlicht MD, Sunnarborg SW, Kouros-Mehr H, Yu Y, Lee DC, Werb Z . Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development 2005; 132: 3923–3933.

    CAS  PubMed  Google Scholar 

  143. Hsu D, Fukata M, Hernandez YG, Sotolongo JP, Goo T, Maki J et al. Toll-like receptor 4 differentially regulates epidermal growth factor-related growth factors in response to intestinal mucosal injury. Lab Invest 2010; 90: 1295–1305.

    CAS  PubMed  Google Scholar 

  144. Panupinthu N, Yu S, Zhang D, Zhang F, Gagea M, Lu Y et al. Self-reinforcing loop of amphiregulin and Y-box binding protein-1 contributes to poor outcomes in ovarian cancer. Oncogene 2013; 33: 2846–2856.

    PubMed  PubMed Central  Google Scholar 

  145. Sauer L, Gitenay D, Vo C, Baron VT . Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells. Oncogene 2010; 29: 2628–2637.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Khambata-Ford S, Garrett CR, Meropol NJ, Basik M, Harbison CT, Wu S et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol 2007; 25: 3230–3237.

    CAS  PubMed  Google Scholar 

  147. Kola I, Landis J . Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004; 3: 711–715.

    CAS  PubMed  Google Scholar 

  148. Gupta PB, Chaffer CL, Weinberg RA . Cancer stem cells: mirage or reality? Nat Med 2009; 15: 1010–1012.

    CAS  PubMed  Google Scholar 

  149. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–792.

    CAS  PubMed  Google Scholar 

  150. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 2008; 26: 127–132.

    CAS  PubMed  Google Scholar 

  151. Visvader JE . Cells of origin in cancer. Nature 2011; 469: 314–322.

    CAS  PubMed  Google Scholar 

  152. Korkaya H, Paulson A, Iovino F, Wicha MS . HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 2008; 27: 6120–6130.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Magnifico A, Albano L, Campaner S, Delia D, Castiglioni F, Gasparini P et al. Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res 2009; 15: 2010–2021.

    CAS  PubMed  Google Scholar 

  154. Chaffer CL, Weinberg RA . How does multistep tumorigenesis really proceed? Cancer Discov 2015; 5: 22–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Mazouzi A, Velimezi G, Loizou JI . DNA replication stress: causes, resolution and disease. Exp Cell Res 2014; 329: 85–93.

    CAS  PubMed  Google Scholar 

  156. D'Uva G, Aharonov A, Lauriola M, Kain D, Yahalom-Ronen Y, Carvalho S et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol 2015; 17: 627–638.

    CAS  PubMed  Google Scholar 

  157. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci USA 2011; 108: 7950–7955.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 2013; 154: 61–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Lagadec C, Vlashi E, Della Donna L, Dekmezian C, Pajonk F . Radiation-induced reprogramming of breast cancer cells. Stem cells 2012; 30: 833–844.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI, Ziegler PK et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 2013; 152: 25–38.

    CAS  PubMed  Google Scholar 

  161. Carpenter G, Cohen S . Epidermal growth factor. Annu Rev Biochem 1979; 48: 193–216.

    CAS  PubMed  Google Scholar 

  162. Pinto AC, Ades F, de Azambuja E, Piccart-Gebhart M . Trastuzumab for patients with HER2 positive breast cancer: delivery, duration and combination therapies. Breast 2013; 22 (Suppl 2): S152–S155.

    PubMed  Google Scholar 

  163. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2007; 21: 2683–2710.

    CAS  PubMed  Google Scholar 

  164. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006; 9: 157–173.

    CAS  PubMed  Google Scholar 

  165. Kalman B, Szep E, Garzuly F, Post DE . Epidermal growth factor receptor as a therapeutic target in glioblastoma. Neuromol Med 2013; 15: 420–434.

    CAS  Google Scholar 

  166. Mazzoleni S, Politi LS, Pala M, Cominelli M, Franzin A, Sergi Sergi L et al. Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. Cancer Res 2010; 70: 7500–7513.

    CAS  PubMed  Google Scholar 

  167. Soeda A, Inagaki A, Oka N, Ikegame Y, Aoki H, Yoshimura S et al. Epidermal growth factor plays a crucial role in mitogenic regulation of human brain tumor stem cells. J Biol Chem 2008; 283: 10958–10966.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lilach Gilboa and Maik Dahlhoff for insightful discussions. MRS is supported by the German Research Foundation (DFG), the Else-Kröner-Fresenius Stiftung, the Fritz Thyssen Foundation and the Wilhelm Sander-Stiftung. YY is the incumbent of the Harold and Zelda Goldenberg Professorial Chair. Currently, he is Research Professor of the Israel Cancer Research Fund. We would like to acknowledge financial support from the European Research Council, the Dr Miriam and Sheldon G Adelson Medical Research Foundation and the family of Mr Marvin Tanner.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M R Schneider or Y Yarden.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, M., Yarden, Y. The EGFR-HER2 module: a stem cell approach to understanding a prime target and driver of solid tumors. Oncogene 35, 2949–2960 (2016). https://doi.org/10.1038/onc.2015.372

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.372

This article is cited by

Search

Quick links