Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The role of poly(ADP-ribosyl)ation in DNA damage response and cancer chemotherapy

Subjects

Abstract

DNA damage is a deleterious threat, but occurs daily in all types of cells. In response to DNA damage, poly(ADP-ribosyl)ation, a unique post-translational modification, is immediately catalyzed by poly(ADP-ribose) polymerases (PARPs) at DNA lesions, which facilitates DNA damage repair. Recent studies suggest that poly(ADP-ribosyl)ation is one of the first steps of cellular DNA damage response and governs early DNA damage response pathways. Suppression of DNA damage-induced poly(ADP-ribosyl)ation by PARP inhibitors impairs early DNA damage response events. Moreover, PARP inhibitors are emerging as anti-cancer drugs in phase III clinical trials for BRCA-deficient tumors. In this review, we discuss recent findings on poly(ADP-ribosyl)ation in DNA damage response as well as the molecular mechanism by which PARP inhibitors selectively kill tumor cells with BRCA mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ciccia A, Elledge SJ . The DNA damage response: making it safe to play with knives. Mol Cell 2010; 40: 179–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jackson SP, Bartek J . The DNA-damage response in human biology and disease. Nature 2009; 461: 1071–1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lord CJ, Ashworth A . The DNA damage response and cancer therapy. Nature 2012; 481: 287–294.

    CAS  PubMed  Google Scholar 

  4. Kim MY, Zhang T, Kraus WL . Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes Dev 2005; 19: 1951–1967.

    CAS  PubMed  Google Scholar 

  5. Luo X, Kraus WL . On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 2012; 26: 417–432.

    PubMed  PubMed Central  Google Scholar 

  6. Chambon P, Weill JD, Mandel P . Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 1963; 11: 39–43.

    CAS  PubMed  Google Scholar 

  7. Weill JD, Busch S, Chambon P, Mandel P . The effect of estradiol injections upon chicken liver nuclei ribonucleic acid polymerase. Biochem Biophys Res Commun 1963; 10: 122–126.

    CAS  PubMed  Google Scholar 

  8. Ame JC, Spenlehauer C, de Murcia G . The PARP superfamily. Bioessays 2004; 26: 882–893.

    CAS  PubMed  Google Scholar 

  9. Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F . Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 2010; 35: 208–219.

    CAS  PubMed  Google Scholar 

  10. Leung AK . Poly(ADP-ribose): an organizer of cellular architecture. J Cell Biol 2014; 205: 613–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schreiber V, Dantzer F, Ame JC, de Murcia G . Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 2006; 7: 517–528.

    CAS  PubMed  Google Scholar 

  12. Alvarez-Gonzalez R, Jacobson MK . Characterization of polymers of adenosine diphosphate ribose generated in vitro and in vivo. Biochemistry 1987; 26: 3218–3224.

    CAS  PubMed  Google Scholar 

  13. Juarez-Salinas H, Levi V, Jacobson EL, Jacobson MK . Poly(ADP-ribose) has a branched structure in vivo. J Biol Chem 1982; 257: 607–609.

    CAS  PubMed  Google Scholar 

  14. Miwa M, Ishihara M, Takishima S, Takasuka N, Maeda M, Yamaizumi Z et al. The branching and linear portions of poly(adenosine diphosphate ribose) have the same alpha(1 leads to 2) ribose-ribose linkage. J Biol Chem 1981; 256: 2916–2921.

    CAS  PubMed  Google Scholar 

  15. D'Amours D, Desnoyers S, D'Silva I, Poirier GG . Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 1999; 342 (Pt 2): 249–268.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Alvarez-Gonzalez R, Pacheco-Rodriguez G, Mendoza-Alvarez H . Enzymology of ADP-ribose polymer synthesis. Mol Cell Biochem 1994; 138: 33–37.

    CAS  PubMed  Google Scholar 

  17. Gasser A, Guse AH . Determination of intracellular concentrations of the TRPM2 agonist ADP-ribose by reversed-phase HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 821: 181–187.

    CAS  PubMed  Google Scholar 

  18. Hassa PO, Haenni SS, Elser M, Hottiger MO . Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 2006; 70: 789–829.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gibson BA, Kraus WL . New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 2012; 13: 411–424.

    CAS  PubMed  Google Scholar 

  20. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG . PARP inhibition: PARP1 and beyond. Nat Rev Cancer 2010; 10: 293–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gradwohl G, Menissier de Murcia JM, Molinete M, Simonin F, Koken M, Hoeijmakers JH et al. The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc Natl Acad Sci USA 1990; 87: 2990–2994.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ali AA, Timinszky G, Arribas-Bosacoma R, Kozlowski M, Hassa PO, Hassler M et al. The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks. Nat Struct Mol Biol 2012; 19: 685–692.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Langelier MF, Planck JL, Roy S, Pascal JM . Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 2012; 336: 728–732.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu X, Chini CC, He M, Mer G, Chen J . The BRCT domain is a phospho-protein binding domain. Science 2003; 302: 639–642.

    CAS  PubMed  Google Scholar 

  25. Manke IA, Lowery DM, Nguyen A, Yaffe MB . BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 2003; 302: 636–639.

    CAS  PubMed  Google Scholar 

  26. Glover JN, Williams RS, Lee MS . Interactions between BRCT repeats and phosphoproteins: tangled up in two. Trends Biochem Sci 2004; 29: 579–585.

    CAS  PubMed  Google Scholar 

  27. Mohammad DH, Yaffe MB . 14-3-3 proteins, FHA domains and BRCT domains in the DNA damage response. DNA Repair (Amst) 2009; 8: 1009–1017.

    CAS  Google Scholar 

  28. Messner S, Hottiger MO . Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol 2011; 21: 534–542.

    CAS  PubMed  Google Scholar 

  29. Martinez-Zamudio R, Ha HC . Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes. Mol Cell Biol 2012; 32: 2490–2502.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Alvarez-Gonzalez R, Althaus FR . Poly(ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents. Mutat Res 1989; 218: 67–74.

    CAS  PubMed  Google Scholar 

  31. Jacobson EL, Antol KM, Juarez-Salinas H, Jacobson MK . Poly(ADP-ribose) metabolism in ultraviolet irradiated human fibroblasts. J Biol Chem 1983; 258: 103–107.

    CAS  PubMed  Google Scholar 

  32. Li M, Lu LY, Yang CY, Wang S, Yu X . The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response. Genes Dev 2013; 27: 1752–1768.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li M, Yu X . Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 2013; 23: 693–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sakura H, Miwa M, Tanaka M, Kanai Y, Shimada T, Matsushima T et al. Natural occurence of a biopolymer, poly (adenosine diphosphate ribose). Nucleic Acids Res 1977; 4: 2903–2915.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Min W, Wang ZQ . Poly (ADP-ribose) glycohydrolase (PARG) and its therapeutic potential. Front Biosci (Landmark Ed) 2009; 14: 1619–1626.

    CAS  Google Scholar 

  36. Davidovic L, Vodenicharov M, Affar EB, Poirier GG . Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp Cell Res 2001; 268: 7–13.

    CAS  PubMed  Google Scholar 

  37. Meyer-Ficca ML, Meyer RG, Jacobson EL, Jacobson MK . Poly(ADP-ribose) polymerases: managing genome stability. Int J Biochem Cell Biol 2005; 37: 920–926.

    CAS  PubMed  Google Scholar 

  38. Mortusewicz O, Fouquerel E, Ame JC, Leonhardt H, Schreiber V . PARG is recruited to DNA damage sites through poly(ADP-ribose)- and PCNA-dependent mechanisms. Nucleic Acids Res 2011; 39: 5045–5056.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng X, Koh DW . Roles of poly(ADP-ribose) glycohydrolase in DNA damage and apoptosis. Int Rev Cell Mol Biol 2013; 304: 227–281.

    CAS  PubMed  Google Scholar 

  40. Moss J, Stanley SJ, Nightingale MS, Murtagh JJ Jr, Monaco L, Mishima K et al. Molecular and immunological characterization of ADP-ribosylarginine hydrolases. J Biol Chem 1992; 267: 10481–10488.

    CAS  PubMed  Google Scholar 

  41. Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, Dixon N et al. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 2011; 477: 616–620.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M, Timinszky G et al. A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol 2013; 20: 508–514.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rosenthal F, Feijs KL, Frugier E, Bonalli M, Forst AH, Imhof R et al. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol 2013; 20: 502–507.

    CAS  PubMed  Google Scholar 

  44. Sharifi R, Morra R, Appel CD, Tallis M, Chioza B, Jankevicius G et al. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J 2013; 32: 1225–1237.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hilz H . ADP-ribosylation of proteins–a multifunctional process. Hoppe Seylers Z Physiol Chem 1981; 362: 1415–1425.

    CAS  PubMed  Google Scholar 

  46. Haenni SS, Hassa PO, Altmeyer M, Fey M, Imhof R, Hottiger MO . Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation. Int J Biochem Cell Biol 2008; 40: 2274–2283.

    CAS  PubMed  Google Scholar 

  47. Messner S, Altmeyer M, Zhao H, Pozivil A, Roschitzki B, Gehrig P et al. PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res 2010; 38: 6350–6362.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang Y, Wang J, Ding M, Yu Y . Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome. Nat Methods 2013; 10: 981–984.

    CAS  PubMed  Google Scholar 

  49. Jungmichel S, Rosenthal F, Altmeyer M, Lukas J, Hottiger MO, Nielsen ML . Proteome-wide identification of poly(ADP-Ribosyl)ation targets in different genotoxic stress responses. Mol Cell 2013; 52: 272–285.

    CAS  PubMed  Google Scholar 

  50. Chapman JD, Gagne JP, Poirier GG, Goodlett DR . Mapping PARP-1 auto-ADP-ribosylation sites by liquid chromatography-tandem mass spectrometry. J Proteome Res 2013; 12: 1868–1880.

    CAS  PubMed  Google Scholar 

  51. Daniels CM, Ong SE, Leung AK . Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl)ation sites from cells. J Proteome Res 2014; 13: 3510–3522.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Poirier GG, de Murcia G, Jongstra-Bilen J, Niedergang C, Mandel P . Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc Natl Acad Sci USA 1982; 79: 3423–3427.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahel I, Ahel D, Matsusaka T, Clark AJ, Pines J, Boulton SJ et al. Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature 2008; 451: 81–85.

    CAS  PubMed  Google Scholar 

  54. Li GY, McCulloch RD, Fenton AL, Cheung M, Meng L, Ikura M et al. Structure and identification of ADP-ribose recognition motifs of APLF and role in the DNA damage response. Proc Natl Acad Sci USA 2010; 107: 9129–9134.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang Z, Michaud GA, Cheng Z, Zhang Y, Hinds TR, Fan E et al. Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev 2012; 26: 235–240.

    PubMed  PubMed Central  Google Scholar 

  56. Karras GI, Kustatscher G, Buhecha HR, Allen MD, Pugieux C, Sait F et al. The macro domain is an ADP-ribose binding module. EMBO J 2005; 24: 1911–1920.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang F, Chen Y, Li M, Yu X . The oligonucleotide/oligosaccharide-binding fold motif is a poly(ADP-ribose)-binding domain that mediates DNA damage response. Proc Natl Acad Sci USA 2014; 111: 7278–7283.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Malanga M, Czubaty A, Girstun A, Staron K, Althaus FR . Poly(ADP-ribose) binds to the splicing factor ASF/SF2 and regulates its phosphorylation by DNA topoisomerase I. J Biol Chem 2008; 283: 19991–19998.

    CAS  PubMed  Google Scholar 

  59. Gagne JP, Hunter JM, Labrecque B, Chabot B, Poirier GG . A proteomic approach to the identification of heterogeneous nuclear ribonucleoproteins as a new family of poly(ADP-ribose)-binding proteins. Biochem J 2003; 371: 331–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL . Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 1998; 395: 917–921.

    CAS  PubMed  Google Scholar 

  61. Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W . NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 1998; 2: 851–861.

    CAS  PubMed  Google Scholar 

  62. Polo SE, Kaidi A, Baskcomb L, Galanty Y, Jackson SP . Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. EMBO J 2010; 29: 3130–3139.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ahel D, Horejsi Z, Wiechens N, Polo SE, Garcia-Wilson E, Ahel I et al. Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 2009; 325: 1240–1243.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gottschalk AJ, Timinszky G, Kong SE, Jin J, Cai Y, Swanson SK et al. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc Natl Acad Sci USA 2009; 106: 13770–13774.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Durkacz BW, Omidiji O, Gray DA, Shall S . (ADP-ribose)n participates in DNA excision repair. Nature 1980; 283: 593–596.

    CAS  PubMed  Google Scholar 

  66. Fisher AE, Hochegger H, Takeda S, Caldecott KW . Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol Cell Biol 2007; 27: 5597–5605.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Le Page F, Schreiber V, Dherin C, De Murcia G, Boiteux S . Poly(ADP-ribose) polymerase-1 (PARP-1) is required in murine cell lines for base excision repair of oxidative DNA damage in the absence of DNA polymerase beta. J Biol Chem 2003; 278: 18471–18477.

    CAS  PubMed  Google Scholar 

  68. Okano S, Lan L, Caldecott KW, Mori T, Yasui A . Spatial and temporal cellular responses to single-strand breaks in human cells. Mol Cell Biol 2003; 23: 3974–3981.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Caldecott KW . Protein-protein interactions during mammalian DNA single-strand break repair. Biochem Soc Trans 2003; 31: 247–251.

    CAS  PubMed  Google Scholar 

  70. Caldecott KW . Single-strand break repair and genetic disease. Nat Rev Genet 2008; 9: 619–631.

    CAS  PubMed  Google Scholar 

  71. Pommier Y, Redon C, Rao VA, Seiler JA, Sordet O, Takemura H et al. Repair of and checkpoint response to topoisomerase I-mediated DNA damage. Mutat Res 2003; 532: 173–203.

    CAS  PubMed  Google Scholar 

  72. Demple B, DeMott MS . Dynamics and diversions in base excision DNA repair of oxidized abasic lesions. Oncogene 2002; 21: 8926–8934.

    CAS  PubMed  Google Scholar 

  73. Hegde ML, Hazra TK, Mitra S . Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 2008; 18: 27–47.

    CAS  PubMed  Google Scholar 

  74. Wilson DM 3rd, Takeshita M, Grollman AP, Demple B . Incision activity of human apurinic endonuclease (Ape) at abasic site analogs in DNA. J Biol Chem 1995; 270: 16002–16007.

    CAS  PubMed  Google Scholar 

  75. Caldecott KW . XRCC1 and DNA strand break repair. DNA Repair (Amst) 2003; 2: 955–969.

    CAS  Google Scholar 

  76. Pleschke JM, Kleczkowska HE, Strohm M, Althaus FR . Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J Biol Chem 2000; 275: 40974–40980.

    CAS  PubMed  Google Scholar 

  77. El-Khamisy SF, Masutani M, Suzuki H, Caldecott KW . A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res 2003; 31: 5526–5533.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Brem R, Hall J . XRCC1 is required for DNA single-strand break repair in human cells. Nucleic Acids Res 2005; 33: 2512–2520.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Whitehouse CJ, Taylor RM, Thistlethwaite A, Zhang H, Karimi-Busheri F, Lasko DD et al. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell 2001; 104: 107–117.

    CAS  PubMed  Google Scholar 

  80. Jilani A, Ramotar D, Slack C, Ong C, Yang XM, Scherer SW et al. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3'-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J Biol Chem 1999; 274: 24176–24186.

    CAS  PubMed  Google Scholar 

  81. Karimi-Busheri F, Daly G, Robins P, Canas B, Pappin DJ, Sgouros J et al. Molecular characterization of a human DNA kinase. J Biol Chem 1999; 274: 24187–24194.

    CAS  PubMed  Google Scholar 

  82. Ahel I, Rass U, El-Khamisy SF, Katyal S, Clements PM, McKinnon PJ et al. The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature 2006; 443: 713–716.

    CAS  PubMed  Google Scholar 

  83. Li S, Kanno S, Watanabe R, Ogiwara H, Kohno T, Watanabe G et al. Polynucleotide kinase and aprataxin-like forkhead-associated protein (PALF) acts as both a single-stranded DNA endonuclease and a single-stranded DNA 3′ exonuclease and can participate in DNA end joining in a biochemical system. J Biol Chem 2011; 286: 36368–36377.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wood RD . DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie 1999; 81: 39–44.

    CAS  PubMed  Google Scholar 

  85. Pines A, Vrouwe MG, Marteijn JA, Typas D, Luijsterburg MS, Cansoy M et al. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J Cell Biol 2012; 199: 235–249.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. de Laat WL, Jaspers NG, Hoeijmakers JH . Molecular mechanism of nucleotide excision repair. Genes Dev 1999; 13: 768–785.

    CAS  PubMed  Google Scholar 

  87. Friedberg EC . How nucleotide excision repair protects against cancer. Nat Rev Cancer 2001; 1: 22–33.

    CAS  PubMed  Google Scholar 

  88. Robu M, Shah RG, Petitclerc N, Brind'Amour J, Kandan-Kulangara F, Shah GM . Role of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by nucleotide excision repair. Proc Natl Acad Sci USA 2013; 110: 1658–1663.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Khanna KK, Jackson SP . DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 2001; 27: 247–254.

    CAS  PubMed  Google Scholar 

  90. Zhou BB, Elledge SJ . The DNA damage response: putting checkpoints in perspective. Nature 2000; 408: 433–439.

    CAS  PubMed  Google Scholar 

  91. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–870.

    CAS  PubMed  Google Scholar 

  92. Haince JF, McDonald D, Rodrigue A, Dery U, Masson JY, Hendzel MJ et al. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J Biol Chem 2008; 283: 1197–1208.

    CAS  PubMed  Google Scholar 

  93. Tartier L, Spenlehauer C, Newman HC, Folkard M, Prise KM, Michael BD et al. Local DNA damage by proton microbeam irradiation induces poly(ADP-ribose) synthesis in mammalian cells. Mutagenesis 2003; 18: 411–416.

    CAS  PubMed  Google Scholar 

  94. Durocher D, Henckel J, Fersht AR, Jackson SP . The FHA domain is a modular phosphopeptide recognition motif. Mol Cell 1999; 4: 387–394.

    CAS  PubMed  Google Scholar 

  95. Li J, Williams BL, Haire LF, Goldberg M, Wilker E, Durocher D et al. Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2. Mol Cell 2002; 9: 1045–1054.

    CAS  PubMed  Google Scholar 

  96. Mahajan A, Yuan C, Lee H, Chen ES, Wu PY, Tsai MD . Structure and function of the phosphothreonine-specific FHA domain. Sci Signal 2008; 1: re12.

    PubMed  Google Scholar 

  97. Williams RS, Dodson GE, Limbo O, Yamada Y, Williams JS, Guenther G et al. Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 2009; 139: 87–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee JH, Paull TT . ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 2005; 308: 551–554.

    CAS  PubMed  Google Scholar 

  99. Lee JH, Paull TT . Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 2004; 304: 93–96.

    CAS  PubMed  Google Scholar 

  100. Shiloh Y, Ziv Y . The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 2013; 14: 197–210.

    CAS  PubMed  Google Scholar 

  101. Smith J, Tho LM, Xu N, Gillespie DA . The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 2010; 108: 73–112.

    CAS  PubMed  Google Scholar 

  102. Zhang F, Ma T, Yu X . A core hSSB1-INTS complex participates in the DNA damage response. J Cell Sci 2013; 126: 4850–4855.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Flynn RL, Zou L . Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. Crit Rev Biochem Mol Biol 2010; 45: 266–275.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Meyer RR, Laine PS . The single-stranded DNA-binding protein of Escherichia coli. Microbiol Rev 1990; 54: 342–380.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Richard DJ, Cubeddu L, Urquhart AJ, Bain A, Bolderson E, Menon D et al. hSSB1 interacts directly with the MRN complex stimulating its recruitment to DNA double-strand breaks and its endo-nuclease activity. Nucleic Acids Res 2011; 39: 3643–3651.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Jackson SP . Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002; 23: 687–696.

    CAS  PubMed  Google Scholar 

  107. Deriano L, Roth DB . Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 2013; 47: 433–455.

    CAS  PubMed  Google Scholar 

  108. Westermark UK, Reyngold M, Olshen AB, Baer R, Jasin M, Moynahan ME . BARD1 participates with BRCA1 in homology-directed repair of chromosome breaks. Mol Cell Biol 2003; 23: 7926–7936.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Powell SN, Kachnic LA . Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 2003; 22: 5784–5791.

    CAS  PubMed  Google Scholar 

  110. Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 2010; 376: 245–251.

    CAS  PubMed  Google Scholar 

  111. Michels J, Vitale I, Saparbaev M, Castedo M, Kroemer G . Predictive biomarkers for cancer therapy with PARP inhibitors. Oncogene 2013; 33: 3894–3907.

    PubMed  Google Scholar 

  112. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005; 434: 913–917.

    CAS  PubMed  Google Scholar 

  113. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434: 917–921.

    CAS  PubMed  Google Scholar 

  114. Petrucelli N, Daly MB, Feldman GL . Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med 2010; 12: 245–259.

    CAS  PubMed  Google Scholar 

  115. Welcsh PL, King MC . BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum Mol Genet 2001; 10: 705–713.

    CAS  PubMed  Google Scholar 

  116. Xia F, Taghian DG, DeFrank JS, Zeng ZC, Willers H, Iliakis G et al. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc Natl Acad Sci USA 2001; 98: 8644–8649.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Scully R, Livingston DM . In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 2000; 408: 429–432.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Tutt A, Bertwistle D, Valentine J, Gabriel A, Swift S, Ross G et al. Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. EMBO J 2001; 20: 4704–4716.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Polyak K, Garber J . Targeting the missing links for cancer therapy. Nat Med 2011; 17: 283–284.

    CAS  PubMed  Google Scholar 

  120. Ashworth A . A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol 2008; 26: 3785–3790.

    CAS  PubMed  Google Scholar 

  121. Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH . Integrating genetic approaches into the discovery of anticancer drugs. Science 1997; 278: 1064–1068.

    CAS  PubMed  Google Scholar 

  122. Lord CJ, Ashworth A . Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med 2013; 19: 1381–1388.

    CAS  PubMed  Google Scholar 

  123. De Lorenzo SB, Patel AG, Hurley RM, Kaufmann SH . The Elephant and the Blind Men: making sense of PARP inhibitors in homologous recombination deficient tumor cells. Front Oncol 2013; 3: 228.

    PubMed  PubMed Central  Google Scholar 

  124. Baer R . Luring BRCA1 to the scene of the crime. Cancer Cell 2013; 23: 565–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Wu LC, Wang ZW, Tsan JT, Spillman MA, Phung A, Xu XL et al. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet 1996; 14: 430–440.

    CAS  PubMed  Google Scholar 

  126. Brzovic PS, Rajagopal P, Hoyt DW, King MC, Klevit RE . Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat Struct Biol 2001; 8: 833–837.

    CAS  PubMed  Google Scholar 

  127. Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 2007; 316: 1194–1198.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kim H, Huang J, Chen J . CCDC98 is a BRCA1-BRCT domain-binding protein involved in the DNA damage response. Nat Struct Mol Biol 2007; 14: 710–715.

    CAS  PubMed  Google Scholar 

  129. Li ML, Greenberg RA . Links between genome integrity and BRCA1 tumor suppression. Trends Biochem Sci 2012; 37: 418–424.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Williams RS, Lee MS, Hau DD, Glover JN . Structural basis of phosphopeptide recognition by the BRCT domain of BRCA1. Nat Struct Mol Biol 2004; 11: 519–525.

    CAS  PubMed  Google Scholar 

  131. Lee MS, Green R, Marsillac SM, Coquelle N, Williams RS, Yeung T et al. Comprehensive analysis of missense variations in the BRCT domain of BRCA1 by structural and functional assays. Cancer Res 2010; 70: 4880–4890.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu CY, Flesken-Nikitin A, Li S, Zeng Y, Lee WH . Inactivation of the mouse Brca1 gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes Dev 1996; 10: 1835–1843.

    CAS  PubMed  Google Scholar 

  133. Thai TH, Du F, Tsan JT, Jin Y, Phung A, Spillman MA et al. Mutations in the BRCA1-associated RING domain (BARD1) gene in primary breast, ovarian and uterine cancers. Hum Mol Genet 1998; 7: 195–202.

    CAS  PubMed  Google Scholar 

  134. Ghimenti C, Sensi E, Presciuttini S, Brunetti IM, Conte P, Bevilacqua G et al. Germline mutations of the BRCA1-associated ring domain (BARD1) gene in breast and breast/ovarian families negative for BRCA1 and BRCA2 alterations. Genes Chromosomes Cancer 2002; 33: 235–242.

    CAS  PubMed  Google Scholar 

  135. Ishitobi M, Miyoshi Y, Hasegawa S, Egawa C, Tamaki Y, Monden M et al. Mutational analysis of BARD1 in familial breast cancer patients in Japan. Cancer Lett 2003; 200: 1–7.

    CAS  PubMed  Google Scholar 

  136. Ruffner H, Joazeiro CA, Hemmati D, Hunter T, Verma IM . Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci USA 2001; 98: 5134–5139.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Brzovic PS, Meza JE, King MC, Klevit RE . BRCA1 RING domain cancer-predisposing mutations. Structural consequences and effects on protein-protein interactions. J Biol Chem 2001; 276: 41399–41406.

    CAS  PubMed  Google Scholar 

  138. Enders A, Fisch P, Schwarz K, Duffner U, Pannicke U, Nikolopoulos E et al. A severe form of human combined immunodeficiency due to mutations in DNA ligase IV. J Immunol 2006; 176: 5060–5068.

    CAS  PubMed  Google Scholar 

  139. Buck D, Moshous D, de Chasseval R, Ma Y, le Deist F, Cavazzana-Calvo M et al. Severe combined immunodeficiency and microcephaly in siblings with hypomorphic mutations in DNA ligase IV. Eur J Immunol 2006; 36: 224–235.

    CAS  PubMed  Google Scholar 

  140. van der Burg M, van Veelen LR, Verkaik NS, Wiegant WW, Hartwig NG, Barendregt BH et al. A new type of radiosensitive T-B-NK+ severe combined immunodeficiency caused by a LIG4 mutation. J Clin Invest 2006; 116: 137–145.

    CAS  PubMed  Google Scholar 

  141. Nelson HH, Kelsey KT, Mott LA, Karagas MR . The XRCC1 Arg399Gln polymorphism, sunburn, and non-melanoma skin cancer: evidence of gene-environment interaction. Cancer Res 2002; 62: 152–155.

    CAS  PubMed  Google Scholar 

  142. Han J, Hankinson SE, Colditz GA, Hunter DJ . Genetic variation in XRCC1, sun exposure, and risk of skin cancer. Br J Cancer 2004; 91: 1604–1609.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Chao Liu to proofread the manuscript. This work was supported by the National Institute of Health (CA132755 and CA130899 to XY). XY is a recipient of the Era of Hope Scholar Award from the Department of Defense. ML is a recipient of the Ovarian Cancer Research Foundation Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Yu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Yu, X. The role of poly(ADP-ribosyl)ation in DNA damage response and cancer chemotherapy. Oncogene 34, 3349–3356 (2015). https://doi.org/10.1038/onc.2014.295

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.295

This article is cited by

Search

Quick links