Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Less understood issues: p21Cip1 in mitosis and its therapeutic potential

Abstract

p21Cip1 is a multifunctional protein and a key player in regulating different cellular processes. The transcription of p21 is regulated by p53-dependent and -independent pathways. The expression of p21 is increased in response to various cellular stresses to arrest the cell cycle and ensure genomic stability. p21 has been shown to be a tumor suppressor and an oncogene as well. The function of p21 in mitosis has been proposed but not systematically studied. We have recently shown that p21 binds to and inhibits the activity of Cdk1/cyclin B1, and is important for a fine-tuned mitotic progression. Loss of p21 prolongs the duration of mitosis and results in severe mitotic defects like chromosome segregation and cytokinesis failures promoting consequently genomic instability. Moreover, p21 is dramatically stabilized in mitotic tumor cells upon treatment with mitotic agents like paclitaxel or mitotic kinase inhibitors. Increased p21 is mainly localized in the cytoplasm and associates with cell survival indicating a crucial role of p21 in susceptibility to mitotic agents in tumor cells. In this review we will briefly summarize the structure and general physiological functions as well as regulation of p21, discuss in detail its role in mitosis and its potential to serve as a therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Sherr CJ . Cancer cell cycles. Science 1996; 274: 1672–1677.

    CAS  PubMed  Google Scholar 

  2. Malumbres M, Barbacid M . Mammalian cyclin-dependent kinases. Trends Biochem Sci 2005; 30: 630–641.

    CAS  PubMed  Google Scholar 

  3. Vermeulen K, Van Bockstaele DR, Berneman ZN . The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 2003; 36: 131–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Garrett MD . Cell cycle control and cancer. Current Science 2001; 81: 515–522.

    Google Scholar 

  5. Sherr CJ, Roberts JM . CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501–1512.

    CAS  PubMed  Google Scholar 

  6. Warfel NA, el-Deiry WS . p21WAF1 and tumourigenesis: 20 years after. Curr Opin Oncol 2013; 25: 52–58.

    CAS  PubMed  Google Scholar 

  7. Ullah Z, Lee CY, Depamphilis ML . Cip/Kip cyclin-dependent protein kinase inhibitors and the road to polyploidy. Cell Div 2009; 4: 10.

    PubMed  PubMed Central  Google Scholar 

  8. Vidal A, Koff A . Cell-cycle inhibitors: three families united by a common cause. Gene 2000; 247: 1–15.

    CAS  PubMed  Google Scholar 

  9. Yan Y, Frisen J, Lee MH, Massague J, Barbacid M . Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev 1997; 11: 973–983.

    CAS  PubMed  Google Scholar 

  10. Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA . Role of the INK4a locus in tumor suppression and cell mortality. Cell 1996; 85: 27–37.

    CAS  PubMed  Google Scholar 

  11. Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 2001; 413: 86–91.

    CAS  PubMed  Google Scholar 

  12. Deng C, Zhang P, Harper JW, Elledge SJ, Leder P . Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995; 82: 675–684.

    CAS  PubMed  Google Scholar 

  13. Martin-Caballero J, Flores JM, Garcia-Palencia P, Serrano M . Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. Cancer Res 2001; 61: 6234–6238.

    CAS  PubMed  Google Scholar 

  14. Garcia-Fernandez RA, Garcia-Palencia P, Sanchez MA, Gil-Gomez G, Sanchez B, Rollan E et al. Combined loss of p21(waf1/cip1) and p27(kip1) enhances tumorigenesis in mice. Lab Invest 2011; 91: 1634–1642.

    CAS  PubMed  Google Scholar 

  15. Xiong Y, Zhang H, Beach D . D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 1992; 71: 505–514.

    CAS  PubMed  Google Scholar 

  16. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D . p21 is a universal inhibitor of cyclin kinases. Nature 1993; 366: 701–704.

    CAS  PubMed  Google Scholar 

  17. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  18. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ . The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75: 805–816.

    Article  CAS  PubMed  Google Scholar 

  19. Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR . Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 1994; 211: 90–98.

    CAS  PubMed  Google Scholar 

  20. Jiang H, Lin J, Su ZZ, Herlyn M, Kerbel RS, Weissman BE et al. The melanoma differentiation-associated gene mda-6, which encodes the cyclin-dependent kinase inhibitor p21, is differentially expressed during growth, differentiation and progression in human melanoma cells. Oncogene 1995; 10: 1855–1864.

    CAS  PubMed  Google Scholar 

  21. Gu Y, Turck CW, Morgan DO . Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature 1993; 366: 707–710.

    CAS  PubMed  Google Scholar 

  22. Harada K, Ogden GR . An overview of the cell cycle arrest protein, p21(WAF1). Oral Oncol 2000; 36: 3–7.

    CAS  PubMed  Google Scholar 

  23. Kriwacki RW, Hengst L, Tennant L, Reed SI, Wright PE . Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc Natl Acad Sci USA 1996; 93: 11504–11509.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lacy ER, Filippov I, Lewis WS, Otieno S, Xiao L, Weiss S et al. p27 binds cyclin-CDK complexes through a sequential mechanism involving binding-induced protein folding. Nat Struct Mol Biol 2004; 11: 358–364.

    CAS  PubMed  Google Scholar 

  25. Follis AV, Galea CA, Kriwacki RW . Intrinsic protein flexibility in regulation of cell proliferation: advantages for signaling and opportunities for novel therapeutics. Adv Exp Med Biol 2012; 725: 27–49.

    CAS  PubMed  Google Scholar 

  26. Galea CA, Wang Y, Sivakolundu SG, Kriwacki RW . Regulation of cell division by intrinsically unstructured proteins: intrinsic flexibility, modularity, and signaling conduits. Biochemistry 2008; 47: 7598–7609.

    CAS  PubMed  Google Scholar 

  27. Chen J, Saha P, Kornbluth S, Dynlacht BD, Dutta A . Cyclin-binding motifs are essential for the function of p21CIP1. Mol Cell Biol 1996; 16: 4673–4682.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Russo AA, Jeffrey PD, Patten AK, Massague J, Pavletich NP . Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 1996; 382: 325–331.

    CAS  PubMed  Google Scholar 

  29. Child ES, Mann DJ . The intricacies of p21 phosphorylation: protein/protein interactions, subcellular localization and stability. Cell Cycle 2006; 5: 1313–1319.

    CAS  PubMed  Google Scholar 

  30. Wang Y, Fisher JC, Mathew R, Ou L, Otieno S, Sublet J et al. Intrinsic disorder mediates the diverse regulatory functions of the Cdk inhibitor p21. Nat Chem Biol 2011; 7: 214–221.

    PubMed  PubMed Central  Google Scholar 

  31. Otieno S, Grace CR, Kriwacki RW . The role of the LH subdomain in the function of the Cip/Kip cyclin-dependent kinase regulators. Biophys J 2011; 100: 2486–2494.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Waga S, Hannon GJ, Beach D, Stillman B . The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 1994; 369: 574–578.

    CAS  PubMed  Google Scholar 

  33. Hwang CY, Kim IY, Kwon KS . Cytoplasmic localization and ubiquitination of p21(Cip1) by reactive oxygen species. Biochem Biophys Res Commun 2007; 358: 219–225.

    CAS  PubMed  Google Scholar 

  34. Rodriguez-Vilarrupla A, Diaz C, Canela N, Rahn HP, Bachs O, Agell N . Identification of the nuclear localization signal of p21(cip1) and consequences of its mutation on cell proliferation. FEBS Lett 2002; 531: 319–323.

    CAS  PubMed  Google Scholar 

  35. Taules M, Rodriguez-Vilarrupla A, Rius E, Estanyol JM, Casanovas O, Sacks DB et al. Calmodulin binds to p21(Cip1) and is involved in the regulation of its nuclear localization. J Biol Chem 1999; 274: 24445–24448.

    CAS  PubMed  Google Scholar 

  36. Agell N, Jaumot M, Rodriguez-Vilarrupla A, Brun S, Abella N, Canela N et al. The diverging roles of calmodulin and PKC in the regulation of p21 intracellular localization. Cell Cycle 2006; 5: 3–6.

    CAS  PubMed  Google Scholar 

  37. Chen X, Chi Y, Bloecher A, Aebersold R, Clurman BE, Roberts JM . N-acetylation and ubiquitin-independent proteasomal degradation of p21(Cip1). Mol Cell 2004; 16: 839–847.

    CAS  PubMed  Google Scholar 

  38. Jung YS, Qian Y, Chen X . Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal 2010; 22: 1003–1012.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dash BC, el-Deiry WS . Phosphorylation of p21 in G2/M promotes cyclin B-Cdc2 kinase activity. Mol Cell Biol 2005; 25: 3364–3387.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jarviluoma A, Child ES, Sarek G, Sirimongkolkasem P, Peters G, Ojala PM et al. Phosphorylation of the cyclin-dependent kinase inhibitor p21Cip1 on serine 130 is essential for viral cyclin-mediated bypass of a p21Cip1-imposed G1 arrest. Mol Cell Biol 2006; 26: 2430–2440.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rossig L, Jadidi AS, Urbich C, Badorff C, Zeiher AM, Dimmeler S . Akt-dependent phosphorylation of p21(Cip1) regulates PCNA binding and proliferation of endothelial cells. Mol Cell Biol 2001; 21: 5644–5657.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Z, Zhang Y, Gu JJ, Davitt C, Reeves R, Magnuson NS . Pim-2 phosphorylation of p21(Cip1/WAF1) enhances its stability and inhibits cell proliferation in HCT116 cells. Int J Biochem Cell Biol 2010; 42: 1030–1038.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cornils H, Kohler RS, Hergovich A, Hemmings BA . Human NDR kinases control G(1)/S cell cycle transition by directly regulating p21 stability. Mol Cell Biol 2011; 31: 1382–1395.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hwang CY, Lee C, Kwon KS . Extracellular signal-regulated kinase 2-dependent phosphorylation induces cytoplasmic localization and degradation of p21Cip1. Mol Cell Biol 2009; 29: 3379–3389.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC . Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 2001; 3: 245–252.

    CAS  PubMed  Google Scholar 

  46. Zhang Y, Wang Z, Magnuson NS . Pim-1 kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells. Mol Cancer Res 2007; 5: 909–922.

    CAS  PubMed  Google Scholar 

  47. Mercer SE, Ewton DZ, Deng X, Lim S, Mazur TR, Friedman E . Mirk/Dyrk1B mediates survival during the differentiation of C2C12 myoblasts. J Biol Chem 2005; 280: 25788–25801.

    CAS  PubMed  Google Scholar 

  48. Rodriguez-Vilarrupla A, Jaumot M, Abella N, Canela N, Brun S, Diaz C et al. Binding of calmodulin to the carboxy-terminal region of p21 induces nuclear accumulation via inhibition of protein kinase C-mediated phosphorylation of Ser153. Mol Cell Biol 2005; 25: 7364–7374.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS . Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta 2002; 1593: 45–55.

    CAS  PubMed  Google Scholar 

  50. Scott MT, Morrice N, Ball KL . Reversible phosphorylation at the C-terminal regulatory domain of p21(Waf1/Cip1) modulates proliferating cell nuclear antigen binding. J Biol Chem 2000; 275: 11529–11537.

    CAS  PubMed  Google Scholar 

  51. Zhan J, Easton JB, Huang S, Mishra A, Xiao L, Lacy ER et al. Negative regulation of ASK1 by p21Cip1 involves a small domain that includes Serine 98 that is phosphorylated by ASK1 in vivo. Mol Cell Biol 2007; 27: 3530–3541.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sheaff RJ, Singer JD, Swanger J, Smitherman M, Roberts JM, Clurman BE . Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol Cell 2000; 5: 403–410.

    CAS  PubMed  Google Scholar 

  53. Starostina NG, Kipreos ET . Multiple degradation pathways regulate versatile CIP/KIP CDK inhibitors. Trends Cell Biol 2012; 22: 33–41.

    CAS  PubMed  Google Scholar 

  54. Xiao J, Zhang Z, Chen GG, Zhang M, Ding Y, Fu J et al. Nucleophosmin/B23 interacts with p21WAF1/CIP1 and contributes to its stability. Cell Cycle 2009; 8: 889–895.

    CAS  PubMed  Google Scholar 

  55. Jascur T, Brickner H, Salles-Passador I, Barbier V, El KA, Smith B et al. Regulation of p21(WAF1/CIP1) stability by WISp39, a Hsp90 binding TPR protein. Mol Cell 2005; 17: 237–249.

    CAS  PubMed  Google Scholar 

  56. Coleman ML, Marshall CJ, Olson MF . Ras promotes p21(Waf1/Cip1) protein stability via a cyclin D1-imposed block in proteasome-mediated degradation. EMBO J 2003; 22: 2036–2046.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu Z, Hunter T . Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Cell Cycle 2010; 9: 2342–2352.

    CAS  PubMed  Google Scholar 

  58. Xiong Y . Targeting p21 degradation locally. Dev Cell 2010; 19: 641–643.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu ZK, Gervais JL, Zhang H . Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci USA 1998; 95: 11324–11329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A . Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem 2003; 278: 25752–25757.

    CAS  PubMed  Google Scholar 

  61. Wang W, Nacusi L, Sheaff RJ, Liu X . Ubiquitination of p21Cip1/WAF1 by SCFSkp2: substrate requirement and ubiquitination site selection. Biochemistry 2005; 44: 14553–14564.

    CAS  PubMed  Google Scholar 

  62. Abbas T, Sivaprasad U, Terai K, Amador V, Pagano M, Dutta A . PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev 2008; 22: 2496–2506.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim Y, Starostina NG, Kipreos ET . The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing. Genes Dev 2008; 22: 2507–2519.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nishitani H, Shiomi Y, Iida H, Michishita M, Takami T, Tsurimoto T . CDK inhibitor p21 is degraded by a proliferating cell nuclear antigen-coupled Cul4-DDB1Cdt2 pathway during S phase and after UV irradiation. J Biol Chem 2008; 283: 29045–29052.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Amador V, Ge S, Santamaria PG, Guardavaccaro D, Pagano M . APC/C(Cdc20) controls the ubiquitin-mediated degradation of p21 in prometaphase. Mol Cell 2007; 27: 462–473.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol 2005; 25: 10875–10894.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yamada K, Tamamori-Adachi M, Goto I, Iizuka M, Yasukawa T, Aso T et al. Degradation of p21Cip1 through anaphase-promoting complex/cyclosome and its activator Cdc20 (APC/CCdc20) ubiquitin ligase complex-mediated ubiquitylation is inhibited by cyclin-dependent kinase 2 in cardiomyocytes. J Biol Chem 2011; 286: 44057–44066.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Starostina NG, Simpliciano JM, McGuirk MA, Kipreos ET . CRL2(LRR-1) targets a CDK inhibitor for cell cycle control in C. elegans and actin-based motility regulation in human cells. Dev Cell 2010; 19: 753–764.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Touitou R, Richardson J, Bose S, Nakanishi M, Rivett J, Allday MJ . A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome. EMBO J 2001; 20: 2367–2375.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu CW, Corboy MJ, DeMartino GN, Thomas PJ . Endoproteolytic activity of the proteasome. Science 2003; 299: 408–411.

    CAS  PubMed  Google Scholar 

  71. Chen X, Barton LF, Chi Y, Clurman BE, Roberts JM . Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Mol Cell 2007; 26: 843–852.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Li X, Amazit L, Long W, Lonard DM, Monaco JJ, O'Malley BW . Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Mol Cell 2007; 26: 831–842.

    PubMed  Google Scholar 

  73. Jin Y, Lee H, Zeng SX, Dai MS, Lu H . MDM2 promotes p21waf1/cip1 proteasomal turnover independently of ubiquitylation. EMBO J 2003; 22: 6365–6377.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Jin Y, Zeng SX, Sun XX, Lee H, Blattner C, Xiao Z et al. MDMX promotes proteasomal turnover of p21 at G1 and early S phases independently of, but in cooperation with, MDM2. Mol Cell Biol 2008; 28: 1218–1229.

    CAS  PubMed  Google Scholar 

  75. Kim GY, Mercer SE, Ewton DZ, Yan Z, Jin K, Friedman E . The stress-activated protein kinases p38 alpha and JNK1 stabilize p21(Cip1) by phosphorylation. J Biol Chem 2002; 277: 29792–29802.

    CAS  PubMed  Google Scholar 

  76. Densham RM, O'Neill E, Munro J, Konig I, Anderson K, Kolch W et al. MST kinases monitor actin cytoskeletal integrity and signal via c-Jun N-terminal kinase stress-activated kinase to regulate p21Waf1/Cip1 stability. Mol Cell Biol 2009; 29: 6380–6390.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Burch LR, Scott M, Pohler E, Meek D, Hupp T . Phage-peptide display identifies the interferon-responsive, death-activated protein kinase family as a novel modifier of MDM2 and p21WAF1. J Mol Biol 2004; 337: 115–128.

    CAS  PubMed  Google Scholar 

  78. Oh YT, Chun KH, Park BD, Choi JS, Lee SK . Regulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1 by protein kinase Cdelta-mediated phosphorylation. Apoptosis 2007; 12: 1339–1347.

    CAS  PubMed  Google Scholar 

  79. Li Y, Dowbenko D, Lasky LA . AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem 2002; 277: 11352–11361.

    CAS  PubMed  Google Scholar 

  80. Rossig L, Badorff C, Holzmann Y, Zeiher AM, Dimmeler S . Glycogen synthase kinase-3 couples AKT-dependent signaling to the regulation of p21Cip1 degradation. J Biol Chem 2002; 277: 9684–9689.

    CAS  PubMed  Google Scholar 

  81. Lee JY, Yu SJ, Park YG, Kim J, Sohn J . Glycogen synthase kinase 3beta phosphorylates p21WAF1/CIP1 for proteasomal degradation after UV irradiation. Mol Cell Biol 2007; 27: 3187–3198.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Suzuki H, Yabuta N, Okada N, Torigata K, Aylon Y, Oren M et al. Lats2 phosphorylates p21/CDKN1A after UV irradiation and regulates apoptosis. J Cell Sci 2013; 126: 4358–4368.

    CAS  PubMed  Google Scholar 

  83. Scott MT, Ingram A, Ball KL . PDK1-dependent activation of atypical PKC leads to degradation of the p21 tumour modifier protein. EMBO J 2002; 21: 6771–6780.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Besson A, Dowdy SF, Roberts JM . CDK inhibitors: cell cycle regulators and beyond. Dev Cell 2008; 14: 159–169.

    CAS  PubMed  Google Scholar 

  85. Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 2009; 460: 1140–1144.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 2009; 460: 1132–1135.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Abbas T, Dutta A . p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 2009; 9: 400–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Cazzalini O, Scovassi AI, Savio M, Stivala LA, Prosperi E . Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat Res 2010; 704: 12–20.

    CAS  PubMed  Google Scholar 

  89. Roninson IB . Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett 2002; 179: 1–14.

    CAS  PubMed  Google Scholar 

  90. Wettersten HI, Hee HS, Li C, Shiu EY, Wecksler AT, Hammock BD et al. A novel p21 attenuator which is structurally related to sorafenib. Cancer Biol Ther 2013; 14: 278–285.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Khanna AK . Enhanced susceptibility of cyclin kinase inhibitor p21 knockout mice to high fat diet induced atherosclerosis. J Biomed Sci 2009; 16: 66.

    PubMed  PubMed Central  Google Scholar 

  92. Yu XG, Lichterfeld M . Elite control of HIV: p21 (waf-1/cip-1) at its best. Cell Cycle 2011; 10: 3213–3214.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gartel AL, Tyner AL . Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res 1999; 246: 280–289.

    CAS  PubMed  Google Scholar 

  94. Gartel AL, Radhakrishnan SK . Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res 2005; 65: 3980–3985.

    CAS  PubMed  Google Scholar 

  95. el-Deiry WS, Tokino T, Waldman T, Oliner JD, Velculescu VE, Burrell M et al. Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res 1995; 55: 2910–2919.

    CAS  PubMed  Google Scholar 

  96. Gartel AL, Tyner AL . The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 2002; 1: 639–649.

    CAS  PubMed  Google Scholar 

  97. LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev 1997; 11: 847–862.

    CAS  PubMed  Google Scholar 

  98. Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM et al. The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 1999; 18: 1571–1583.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Weiss RH . p21Waf1/Cip1 as a therapeutic target in breast and other cancers. Cancer Cell 2003; 4: 425–429.

    CAS  PubMed  Google Scholar 

  100. Coqueret O . New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 2003; 13: 65–70.

    CAS  PubMed  Google Scholar 

  101. Jurk D, Wang C, Miwa S, Maddick M, Korolchuk V, Tsolou A et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 2012; 11: 996–1004.

    CAS  PubMed  Google Scholar 

  102. Spencer SL, Cappell SD, Tsai FC, Overton KW, Wang CL, Meyer T . The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 2013; 155: 369–383.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Chang BD, Watanabe K, Broude EV, Fang J, Poole JC, Kalinichenko TV et al. Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc Natl Acad Sci USA 2000; 97: 4291–4296.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ferrandiz N, Caraballo JM, Garcia-Gutierrez L, Devgan V, Rodriguez-Paredes M, Lafita MC et al. p21 as a transcriptional co-repressor of S-phase and mitotic control genes. PLoS ONE 2012; 7: e37759.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Li Y, Jenkins CW, Nichols MA, Xiong Y . Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene 1994; 9: 2261–2268.

    CAS  PubMed  Google Scholar 

  106. Dulic V, Stein GH, Far DF, Reed SI . Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Mol Cell Biol 1998; 18: 546–557.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998; 282: 1497–1501.

    CAS  PubMed  Google Scholar 

  108. Flatt PM, Tang LJ, Scatena CD, Szak ST, Pietenpol JA . p53 regulation of G(2) checkpoint is retinoblastoma protein dependent. Mol Cell Biol 2000; 20: 4210–4223.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lanni JS, Jacks T . Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol 1998; 18: 1055–1064.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Lee J, Kim JA, Barbier V, Fotedar A, Fotedar R . DNA damage triggers p21WAF1-dependent Emi1 down-regulation that maintains G2 arrest. Mol Biol Cell 2009; 20: 1891–1902.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Niculescu AB III, Chen X, Smeets M, Hengst L, Prives C, Reed SI . Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 1998; 18: 629–643.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ando T, Kawabe T, Ohara H, Ducommun B, Itoh M, Okamoto T . Involvement of the interaction between p21 and proliferating cell nuclear antigen for the maintenance of G2/M arrest after DNA damage. J Biol Chem 2001; 276: 42971–42977.

    CAS  PubMed  Google Scholar 

  113. Bates S, Ryan KM, Phillips AC, Vousden KH . Cell cycle arrest and DNA endoreduplication following p21Waf1/Cip1 expression. Oncogene 1998; 17: 1691–1703.

    CAS  PubMed  Google Scholar 

  114. Baus F, Gire V, Fisher D, Piette J, Dulic V . Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts. EMBO J 2003; 22: 3992–4002.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Charrier-Savournin FB, Chateau MT, Gire V, Sedivy J, Piette J, Dulic V . p21-Mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol Biol Cell 2004; 15: 3965–3976.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Gillis LD, Leidal AM, Hill R, Lee PW . p21Cip1/WAF1 mediates cyclin B1 degradation in response to DNA damage. Cell Cycle 2009; 8: 253–256.

    CAS  PubMed  Google Scholar 

  117. Medema RH, Klompmaker R, Smits VA, Rijksen G . p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases. Oncogene 1998; 16: 431–441.

    CAS  PubMed  Google Scholar 

  118. Smits VA, Klompmaker R, Vallenius T, Rijksen G, Makela TP, Medema RH . p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J Biol Chem 2000; 275: 30638–30643.

    CAS  PubMed  Google Scholar 

  119. Duensing A, Ghanem L, Steinman RA, Liu Y, Duensing S . p21(Waf1/Cip1) deficiency stimulates centriole overduplication. Cell Cycle 2006; 5: 2899–2902.

    CAS  PubMed  Google Scholar 

  120. Mantel C, Braun SE, Reid S, Henegariu O, Liu L, Hangoc G et al. p21(cip-1/waf-1) deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood 1999; 93: 1390–1398.

    CAS  PubMed  Google Scholar 

  121. Gartel AL . P21(WAF1/CIP1) may be a tumor suppressor after all. Cancer Biol Ther 2007; 6: 1171–1172.

    PubMed  Google Scholar 

  122. Barboza JA, Liu G, Ju Z, El-Naggar AK, Lozano G . p21 delays tumor onset by preservation of chromosomal stability. Proc Natl Acad Sci USA 2006; 103: 19842–19847.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Van NT, Puebla-Osorio N, Pang H, Dujka ME, Zhu C . DNA damage-induced cellular senescence is sufficient to suppress tumorigenesis: a mouse model. J Exp Med 2007; 204: 1453–1461.

    Google Scholar 

  124. Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P et al. Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 1995; 6: 387–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Cai K, Dynlacht BD . Activity and nature of p21(WAF1) complexes during the cell cycle. Proc Natl Acad Sci USA 1998; 95: 12254–12259.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kreis NN, Sommer K, Sanhaji M, Kramer A, Matthess Y, Kaufmann M et al. Long-term downregulation of Polo-like kinase 1 increases the cyclin-dependent kinase inhibitor p21(WAF1/CIP1). Cell Cycle 2009; 8: 460–472.

    CAS  PubMed  Google Scholar 

  127. Waldman T, Lengauer C, Kinzler KW, Vogelstein B . Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 1996; 381: 713–716.

    CAS  PubMed  Google Scholar 

  128. Stewart ZA, Leach SD, Pietenpol JA . p21(Waf1/Cip1) inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption. Mol Cell Biol 1999; 19: 205–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Martin A, Odajima J, Hunt SL, Dubus P, Ortega S, Malumbres M et al. Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27(Kip1) and p21(Cip1). Cancer Cell 2005; 7: 591–598.

    CAS  PubMed  Google Scholar 

  130. Kreis NN, Sanhaji M, Rieger MA, Louwen F, Yuan J . p21Waf1/Cip1 deficiency causes multiple mitotic defects in tumor cells. Oncogene 2013; epub ahead of print 9 December 2013; doi:10.1038/onc.2013.518.

    PubMed  Google Scholar 

  131. Malumbres M, Barbacid M . Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009; 9: 153–166.

    CAS  PubMed  Google Scholar 

  132. Clute P, Pines J . Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1999; 1: 82–87.

    CAS  PubMed  Google Scholar 

  133. Glotzer M, Murray AW, Kirschner MW . Cyclin is degraded by the ubiquitin pathway. Nature 1991; 349: 132–138.

    CAS  PubMed  Google Scholar 

  134. Murray AW, Kirschner MW . Cyclin synthesis drives the early embryonic cell cycle. Nature 1989; 339: 275–280.

    CAS  PubMed  Google Scholar 

  135. Parry DH, O'Farrell PH . The schedule of destruction of three mitotic cyclins can dictate the timing of events during exit from mitosis. Curr Biol 2001; 11: 671–683.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Pomerening JR, Ubersax JA, Ferrell JE Jr . Rapid cycling and precocious termination of G1 phase in cells expressing CDK1AF. Mol Biol Cell 2008; 19: 3426–3441.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wolf F, Wandke C, Isenberg N, Geley S . Dose-dependent effects of stable cyclin B1 on progression through mitosis in human cells. EMBO J 2006; 25: 2802–2813.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Wolf F, Sigl R, Geley S . '... The end of the beginning': cdk1 thresholds and exit from mitosis. Cell Cycle 2007; 6: 1408–1411.

    CAS  PubMed  Google Scholar 

  139. Potapova TA, Daum JR, Pittman BD, Hudson JR, Jones TN, Satinover DL et al. The reversibility of mitotic exit in vertebrate cells. Nature 2006; 440: 954–958.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Murata-Hori M, Tatsuka M, Wang YL . Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. Mol Biol Cell 2002; 13: 1099–1108.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mishima M, Pavicic V, Gruneberg U, Nigg EA, Glotzer M . Cell cycle regulation of central spindle assembly. Nature 2004; 430: 908–913.

    CAS  PubMed  Google Scholar 

  142. Trakala M, Fernandez-Miranda G, Perez dC I, Heeschen C, Malumbres M . Aurora B prevents delayed DNA replication and premature mitotic exit by repressing p21(Cip1). Cell Cycle 2013; 12: 1030–1041.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Strebhardt K . Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov 2010; 9: 643–660.

    CAS  PubMed  Google Scholar 

  144. Chan KS, Koh CG, Li HY . Mitosis-targeted anti-cancer therapies: where they stand. Cell Death Dis 2012; 3: e411.

    PubMed  PubMed Central  Google Scholar 

  145. Louwen F, Yuan J . Battle of the eternal rivals: restoring functional p53 and inhibiting Polo-like kinase 1 as cancer therapy. Oncotarget 2013; 4: 958–971.

    PubMed  PubMed Central  Google Scholar 

  146. Abukhdeir AM, Park BH . P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med 2008; 10: e19.

    PubMed  PubMed Central  Google Scholar 

  147. Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW et al. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 1994; 76: 1013–1023.

    CAS  PubMed  Google Scholar 

  148. Mitchell KO, el-Deiry WS . Overexpression of c-Myc inhibits p21WAF1/CIP1 expression and induces S-phase entry in 12-O-tetradecanoylphorbol-13-acetate (TPA)-sensitive human cancer cells. Cell Growth Differ 1999; 10: 223–230.

    CAS  PubMed  Google Scholar 

  149. Blagosklonny MV . Are p27 and p21 cytoplasmic oncoproteins? Cell Cycle 2002; 1: 391–393.

    CAS  PubMed  Google Scholar 

  150. Waldman T, Kinzler KW, Vogelstein B . p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 1995; 55: 5187–5190.

    CAS  PubMed  Google Scholar 

  151. Jackson RJ, Engelman RW, Coppola D, Cantor AB, Wharton W, Pledger WJ . p21Cip1 nullizygosity increases tumor metastasis in irradiated mice. Cancer Res 2003; 63: 3021–3025.

    CAS  PubMed  Google Scholar 

  152. Maelandsmo GM, Holm R, Fodstad O, Kerbel RS, Florenes VA . Cyclin kinase inhibitor p21WAF1/CIP1 in malignant melanoma: reduced expression in metastatic lesions. Am J Pathol 1996; 149: 1813–1822.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Stivala LA, Cazzalini O, Prosperi E . The cyclin-dependent kinase inhibitor p21CDKN1A as a target of anti-cancer drugs. Curr Cancer Drug Targets 2012; 12: 85–96.

    CAS  PubMed  Google Scholar 

  154. Lee S, Helfman DM . Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway. J Biol Chem 2004; 279: 1885–1891.

    CAS  PubMed  Google Scholar 

  155. Denicourt C, Dowdy SF . Cip/Kip proteins: more than just CDKs inhibitors. Genes Dev 2004; 18: 851–855.

    CAS  PubMed  Google Scholar 

  156. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000; 287: 1804–1808.

    CAS  PubMed  Google Scholar 

  157. Viale A, De FF, Orleth A, Cambiaghi V, Giuliani V, Bossi D et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 2009; 457: 51–56.

    CAS  PubMed  Google Scholar 

  158. Medema JP . Cancer stem cells: the challenges ahead. Nat Cell Biol 2013; 15: 338–344.

    CAS  PubMed  Google Scholar 

  159. Liu M, Casimiro MC, Wang C, Shirley LA, Jiao X, Katiyar S et al. p21CIP1 attenuates Ras- and c-Myc-dependent breast tumor epithelial mesenchymal transition and cancer stem cell-like gene expression in vivo. Proc Natl Acad Sci USA 2009; 106: 19035–19039.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Hayflick L . THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res 1965; 37: 614–636.

    CAS  PubMed  Google Scholar 

  161. Rodier F, Campisi J . Four faces of cellular senescence. J Cell Biol 2011; 192: 547–556.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Gordon RR, Nelson PS . Cellular senescence and cancer chemotherapy resistance. Drug Resist Updat 2012; 15: 123–131.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Liu R, Wettersten HI, Park SH, Weiss RH . Small-molecule inhibitors of p21 as novel therapeutics for chemotherapy-resistant kidney cancer. Future Med Chem 2013; 5: 991–994.

    CAS  PubMed  Google Scholar 

  164. Heliez C, Baricault L, Barboule N, Valette A . Paclitaxel increases p21 synthesis and accumulation of its AKT-phosphorylated form in the cytoplasm of cancer cells. Oncogene 2003; 22: 3260–3268.

    CAS  PubMed  Google Scholar 

  165. Perez-Tenorio G, Berglund F, Esguerra MA, Nordenskjold B, Rutqvist LE, Skoog L et al. Cytoplasmic p21WAF1/CIP1 correlates with Akt activation and poor response to tamoxifen in breast cancer. Int J Oncol 2006; 28: 1031–1042.

    CAS  PubMed  Google Scholar 

  166. Tian H, Wittmack EK, Jorgensen TJ . p21WAF1/CIP1 antisense therapy radiosensitizes human colon cancer by converting growth arrest to apoptosis. Cancer Res 2000; 60: 679–684.

    CAS  PubMed  Google Scholar 

  167. Vincent AJ, Ren S, Harris LG, Devine DJ, Samant RS, Fodstad O et al. Cytoplasmic translocation of p21 mediates NUPR1-induced chemoresistance: NUPR1 and p21 in chemoresistance. FEBS Lett 2012; 586: 3429–3434.

    CAS  PubMed  Google Scholar 

  168. Ping B, He X, Xia W, Lee DF, Wei Y, Yu D et al. Cytoplasmic expression of p21CIP1/WAF1 is correlated with IKKbeta overexpression in human breast cancers. Int J Oncol 2006; 29: 1103–1110.

    CAS  PubMed  Google Scholar 

  169. Winters ZE, Hunt NC, Bradburn MJ, Royds JA, Turley H, Harris AL et al. Subcellular localisation of cyclin B, Cdc2 and p21(WAF1/CIP1) in breast cancer. association with prognosis. Eur J Cancer 2001; 37: 2405–2412.

    CAS  PubMed  Google Scholar 

  170. Winters ZE, Leek RD, Bradburn MJ, Norbury CJ, Harris AL . Cytoplasmic p21WAF1/CIP1 expression is correlated with HER-2/ neu in breast cancer and is an independent predictor of prognosis. Breast Cancer Res 2003; 5: R242–R249.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Xia W, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y et al. Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res 2004; 10: 3815–3824.

    CAS  PubMed  Google Scholar 

  172. Koster R, di PA, Timmer-Bosscha H, Gibcus JH, van den Berg A, Suurmeijer AJ et al. Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer. J Clin Invest 2010; 120: 3594–3605.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Xia X, Ma Q, Li X, Ji T, Chen P, Xu H et al. Cytoplasmic p21 is a potential predictor for cisplatin sensitivity in ovarian cancer. BMC Cancer 2011; 11: 399.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Sax JK, Dash BC, Hong R, Dicker DT, el-Deiry WS . The cyclin-dependent kinase inhibitor butyrolactone is a potent inhibitor of p21 (WAF1/CIP1 expression). Cell Cycle 2002; 1: 90–96.

    CAS  PubMed  Google Scholar 

  175. Park SH, Wang X, Liu R, Lam KS, Weiss RH . High throughput screening of a small molecule one-bead-one-compound combinatorial library to identify attenuators of p21 as chemotherapy sensitizers. Cancer Biol Ther 2008; 7: 2015–2022.

    CAS  PubMed  Google Scholar 

  176. Inoue H, Hwang SH, Wecksler AT, Hammock BD, Weiss RH . Sorafenib attenuates p21 in kidney cancer cells and augments cell death in combination with DNA-damaging chemotherapy. Cancer Biol Ther 2011; 12: 827–836.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Solomon H, Madar S, Rotter V . Mutant p53 gain of function is interwoven into the hallmarks of cancer. J Pathol 2011; 225: 475–478.

    CAS  PubMed  Google Scholar 

  178. Jackson JG, Lozano G . The mutant p53 mouse as a pre-clinical model. Oncogene 2013; 32: 4325–4330.

    CAS  PubMed  Google Scholar 

  179. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the authors whose work could not be cited due to space limitations. We thank our colleagues for the critical reading of this manuscript. The work in the lab has been supported by Deutsche Krebshilfe (#108553 and #109672) and Deutsche Forschungsgemeinschaft (#Yu 156/2-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N-N Kreis or J Yuan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreis, NN., Louwen, F. & Yuan, J. Less understood issues: p21Cip1 in mitosis and its therapeutic potential. Oncogene 34, 1758–1767 (2015). https://doi.org/10.1038/onc.2014.133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.133

This article is cited by

Search

Quick links