Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Mitochondrial matrix proteases as novel therapeutic targets in malignancy

Abstract

Although mitochondrial function is often altered in cancer, it remains essential for tumor viability. Tight control of protein homeostasis is required for the maintenance of mitochondrial function, and the mitochondrial matrix houses several coordinated protein quality control systems. These include three evolutionarily conserved proteases of the AAA+ superfamily—the Lon, ClpXP and m-AAA proteases. In humans, these proteases are proposed to degrade, process and chaperone the assembly of mitochondrial proteins in the matrix and inner membrane involved in oxidative phosphorylation, mitochondrial protein synthesis, mitochondrial network dynamics and nucleoid function. In addition, these proteases are upregulated by a variety of mitochondrial stressors, including oxidative stress, unfolded protein stress and imbalances in respiratory complex assembly. Given that tumor cells must survive and proliferate under dynamic cellular stress conditions, dysregulation of mitochondrial protein quality control systems may provide a selective advantage. The association of mitochondrial matrix AAA+ proteases with cancer and their potential for therapeutic modulation therefore warrant further consideration. Although our current knowledge of the endogenous human substrates of these proteases is limited, we highlight functional insights gained from cultured human cells, protease-deficient mouse models and other eukaryotic model organisms. We also review the consequences of disrupting mitochondrial matrix AAA+ proteases through genetic and pharmacological approaches, along with implications of these studies on the potential of these proteases as anticancer therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Chen B, Retzlaff M, Roos T, Frydman J . Cellular strategies of protein quality control. Cold Spring Harb Perspect Biol 2011; 3: a004374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Chondrogianni N, Gonos ES . Structure and function of the ubiquitin-proteasome system: modulation of components. Prog Mol Biol Transl Sci 2012; 109: 41–74.

    Article  CAS  PubMed  Google Scholar 

  3. Park YE, Hayashi YK, Bonne G, Arimura T, Noguchi S, Nonaka I et al. Autophagic degradation of nuclear components in mammalian cells. Autophagy 2009; 5: 795–804.

    Article  CAS  PubMed  Google Scholar 

  4. Rubinsztein DC, Codogno P, Levine B . Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 2012; 11: 709–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J et al. Sequence and organization of the human mitochondrial genome. Nature 1981; 290: 457–465.

    Article  CAS  PubMed  Google Scholar 

  6. Yang JS, Kim J, Park S, Jeon J, Shin YE, Kim S . Spatial and functional organization of mitochondrial protein network. Sci Rep 2013; 3: 1403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kehrein K, Bonnefoy N, Ott M . Mitochondrial protein synthesis: efficiency and accuracy. Antioxid Redox Signal (e-pub ahead of print 22 January 2013; doi:10.1089/ars.2012.4896.).

    Article  CAS  Google Scholar 

  8. Balsa E, Marco R, Perales-Clemente E, Szklarczyk R, Calvo E, Landazuri MO et al. NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab 2012; 16: 378–386.

    Article  CAS  PubMed  Google Scholar 

  9. Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE . Bovine complex I is a complex of 45 different subunits. J Biol Chem 2006; 281: 32724–32727.

    Article  CAS  PubMed  Google Scholar 

  10. Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE . The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim Biophys Acta 2003; 1604: 135–150.

    Article  CAS  PubMed  Google Scholar 

  11. Micel LN, Tentler JJ, Smith PG, Eckhardt SG . Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J Clin Oncol 2013; 31: 1231–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. The UniProt Consortium, Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 2012; 40: D71–D75.

    Article  CAS  Google Scholar 

  13. UniProt Consortium UniProt Kowledgebase [Internet] 2013, Accessed on 28 March 2013. Available from http://www.uniprot.org/uniprot/.

  14. Zurawa-Janicka D, Skorko-Glonek J, Lipinska B . HtrA proteins as targets in therapy of cancer and other diseases. Expert Opin Ther Targets 2010; 14: 665–679.

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R . A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 2001; 8: 613–621.

    Article  CAS  PubMed  Google Scholar 

  16. Hartkamp J, Carpenter B, Roberts SG . The Wilms’ tumor suppressor protein WT1 is processed by the serine protease HtrA2/Omi. Mol Cell 2010; 37: 159–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Srinivasula SM, Gupta S, Datta P, Zhang Z, Hegde R, Cheong N et al. Inhibitor of apoptosis proteins are substrates for the mitochondrial serine protease Omi/HtrA2. J Biol Chem 2003; 278: 31469–31472.

    Article  CAS  PubMed  Google Scholar 

  18. Johnson F, Kaplitt MG . Novel mitochondrial substrates of omi indicate a new regulatory role in neurodegenerative disorders. PLoS One 2009; 4: e7100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Vande Walle L, Van Damme P, Lamkanfi M, Saelens X, Vandekerckhove J, Gevaert K et al. Proteome-wide identification of HtrA2/Omi substrates. J Proteome Res 2007; 6: 1006–1015.

    Article  CAS  PubMed  Google Scholar 

  20. Truscott KN, Lowth BR, Strack PR, Dougan DA . Diverse functions of mitochondrial AAA+ proteins: protein activation, disaggregation, and degradation. Biochem Cell Biol 2010; 88: 97–108.

    Article  CAS  PubMed  Google Scholar 

  21. Wang N, Gottesman S, Willingham MC, Gottesman MM, Maurizi MR . A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc Natl Acad Sci USA 1993; 90: 11247–11251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang N, Maurizi MR, Emmert-Buck L, Gottesman MM . Synthesis, processing, and localization of human Lon protease. J Biol Chem 1994; 269: 29308–29313.

    Article  CAS  PubMed  Google Scholar 

  23. Venkatesh S, Lee J, Singh K, Lee I, Suzuki CK . Multitasking in the mitochondrion by the ATP-dependent Lon protease. Biochim Biophys Acta 2012; 1823: 56–66.

    Article  CAS  PubMed  Google Scholar 

  24. Garcia-Nafria J, Ondrovicova G, Blagova E, Levdikov VM, Bauer JA, Suzuki CK et al. Structure of the catalytic domain of the human mitochondrial Lon protease: proposed relation of oligomer formation and activity. Protein Sci 2010; 19: 987–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cha SS, An YJ, Lee CR, Lee HS, Kim YG, Kim SJ et al. Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. EMBO J 2010; 29: 3520–3530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stahlberg H, Kutejova E, Suda K, Wolpensinger B, Lustig A, Schatz G et al. Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits. Proc Natl Acad Sci USA 1999; 96: 6787–6790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ondrovicova G, Liu T, Singh K, Tian B, Li H, Gakh O et al. Cleavage site selection within a folded substrate by the ATP-dependent lon protease. J Biol Chem 2005; 280: 25103–25110.

    Article  CAS  PubMed  Google Scholar 

  28. Granot Z, Kobiler O, Melamed-Book N, Eimerl S, Bahat A, Lu B et al. Turnover of mitochondrial steroidogenic acute regulatory (StAR) protein by Lon protease: the unexpected effect of proteasome inhibitors. Mol Endocrinol 2007; 21: 2164–2177.

    Article  CAS  PubMed  Google Scholar 

  29. Van Dyck L, Pearce DA, Sherman F . PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. J Biol Chem 1994; 269: 238–242.

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki CK, Suda K, Wang N, Schatz G . Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science 1994; 264: 273–276.

    Article  CAS  PubMed  Google Scholar 

  31. Major T, von Janowsky B, Ruppert T, Mogk A, Voos W . Proteomic analysis of mitochondrial protein turnover: identification of novel substrate proteins of the matrix protease pim1. Mol Cell Biol 2006; 26: 762–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bayot A, Gareil M, Rogowska-Wrzesinska A, Roepstorff P, Friguet B, Bulteau AL . Identification of novel oxidized protein substrates and physiological partners of the mitochondrial ATP-dependent Lon-like protease Pim1. J Biol Chem 2010; 285: 11445–11457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bender T, Leidhold C, Ruppert T, Franken S, Voos W . The role of protein quality control in mitochondrial protein homeostasis under oxidative stress. Proteomics 2010; 10: 1426–1443.

    Article  CAS  PubMed  Google Scholar 

  34. Bender T, Lewrenz I, Franken S, Baitzel C, Voos W . Mitochondrial enzymes are protected from stress-induced aggregation by mitochondrial chaperones and the Pim1/LON protease. Mol Biol Cell 2011; 22: 541–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rep M, Nooy J, Guelin E, Grivell LA . Three genes for mitochondrial proteins suppress null-mutations in both Afg3 and Rca1 when over-expressed. Curr Genet 1996; 30: 206–211.

    Article  CAS  PubMed  Google Scholar 

  36. Rep M, van Dijl JM, Suda K, Schatz G, Grivell LA, Suzuki CK . Promotion of mitochondrial membrane complex assembly by a proteolytically inactive yeast Lon. Science 1996; 274: 103–106.

    Article  CAS  PubMed  Google Scholar 

  37. Lu B, Liu T, Crosby JA, Thomas-Wohlever J, Lee I, Suzuki CK . The ATP-dependent Lon protease of Mus musculus is a DNA-binding protein that is functionally conserved between yeast and mammals. Gene 2003; 306: 45–55.

    Article  CAS  PubMed  Google Scholar 

  38. Hori O, Ichinoda F, Tamatani T, Yamaguchi A, Sato N, Ozawa K et al. Transmission of cell stress from endoplasmic reticulum to mitochondria: enhanced expression of Lon protease. J Cell Biol 2002; 157: 1151–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ngo JK, Davies KJ . Mitochondrial Lon protease is a human stress protein. Free Radic Biol Med 2009; 46: 1042–1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL . HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 2007; 129: 111–122.

    Article  CAS  PubMed  Google Scholar 

  41. Pinti M, Gibellini L, De Biasi S, Nasi M, Roat E, O'Connor JE et al. Functional characterization of the promoter of the human Lon protease gene. Mitochondrion 2011; 11: 200–206.

    Article  CAS  PubMed  Google Scholar 

  42. Ngo JK, Pomatto LC, Bota DA, Koop AL, Davies KJ . Impairment of lon-induced protection against the accumulation of oxidized proteins in senescent wi-38 fibroblasts. J Gerontol A Biol Sci Med Sci 2011; 66: 1178–1185.

    Article  PubMed  CAS  Google Scholar 

  43. Venditti P, Di Stefano L, Di Meo S . Mitochondrial metabolism of reactive oxygen species. Mitochondrion 2013; 13: 71–82.

    Article  CAS  PubMed  Google Scholar 

  44. Bota DA, Van Remmen H, Davies KJ . Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Lett 2002; 532: 103–106.

    Article  CAS  PubMed  Google Scholar 

  45. Lee CK, Klopp RG, Weindruch R, Prolla TA . Gene expression profile of aging and its retardation by caloric restriction. Science 1999; 285: 1390–1393.

    Article  CAS  PubMed  Google Scholar 

  46. Bakala H, Delaval E, Hamelin M, Bismuth J, Borot-Laloi C, Corman B et al. Changes in rat liver mitochondria with aging. Lon protease-like reactivity and N(epsilon)-carboxymethyllysine accumulation in the matrix. Eur J Biochem 2003; 270: 2295–2302.

    Article  CAS  PubMed  Google Scholar 

  47. Delaval E, Perichon M, Friguet B . Age-related impairment of mitochondrial matrix aconitase and ATP-stimulated protease in rat liver and heart. Eur J Biochem 2004; 271: 4559–4564.

    Article  CAS  PubMed  Google Scholar 

  48. Bota DA, Davies KJ . Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 2002; 4: 674–680.

    Article  CAS  PubMed  Google Scholar 

  49. Stanyer L, Jorgensen W, Hori O, Clark JB, Heales SJ . Inactivation of brain mitochondrial Lon protease by peroxynitrite precedes electron transport chain dysfunction. Neurochem Int 2008; 53: 95–101.

    Article  CAS  PubMed  Google Scholar 

  50. Lu B, Yadav S, Shah PG, Liu T, Tian B, Pukszta S et al. Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance. J Biol Chem 2007; 282: 17363–17374.

    Article  CAS  PubMed  Google Scholar 

  51. Liu T, Lu B, Lee I, Ondrovicova G, Kutejova E, CK Suzuki . DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate. J Biol Chem 2004; 279: 13902–13910.

    Article  CAS  PubMed  Google Scholar 

  52. Cheng X, Kanki T, Fukuoh A, Ohgaki K, Takeya R, Aoki Y et al. PDIP38 associates with proteins constituting the mitochondrial DNA nucleoid. J Biochem 2005; 138: 673–678.

    Article  CAS  PubMed  Google Scholar 

  53. Bogenhagen DF, Rousseau D, Burke S . The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 2008; 283: 3665–3675.

    Article  CAS  PubMed  Google Scholar 

  54. Lu B, Lee J, Nie X, Li M, Morozov YI, Venkatesh S et al. Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA(+) Lon protease. Mol Cell 2013; 49: 121–132.

    Article  CAS  PubMed  Google Scholar 

  55. Fu GK, Markovitz DM . The human LON protease binds to mitochondrial promoters in a single-stranded, site-specific, strand-specific manner. Biochemistry 1998; 37: 1905–1909.

    Article  CAS  PubMed  Google Scholar 

  56. Zhu Y, Wang M, Lin H, Huang C, Shi X, Luo J . Epidermal growth factor up-regulates the transcription of mouse lon homology ATP-dependent protease through extracellular signal-regulated protein kinase- and phosphatidylinositol-3-kinase-dependent pathways. Exp Cell Res 2002; 280: 97–106.

    Article  CAS  PubMed  Google Scholar 

  57. De Luca A, Maiello MR, D'Alessio A, Pergameno M, Normanno N . The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 2012; 16 (Suppl 2): S17–S27.

    Article  CAS  PubMed  Google Scholar 

  58. Luciakova K, Sokolikova B, Chloupkova M, Nelson BD . Enhanced mitochondrial biogenesis is associated with increased expression of the mitochondrial ATP-dependent Lon protease. FEBS Lett 1999; 444: 186–188.

    Article  CAS  PubMed  Google Scholar 

  59. Wang HM, Cheng KC, Lin CJ, Hsu SW, Fang WC, Hsu TF et al. Obtusilactone A and (−)-sesamin induce apoptosis in human lung cancer cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints. Cancer Sci 2010; 101: 2612–2620.

    Article  CAS  PubMed  Google Scholar 

  60. Bernstein SH, Venkatesh S, Li M, Lee J, Lu B, Hilchey SP et al. The mitochondrial ATP-dependent Lon protease: a novel target in lymphoma death mediated by the synthetic triterpenoid CDDO and its derivatives. Blood 2012; 119: 3321–3329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bota DA, Ngo JK, Davies KJ . Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radic Biol Med 2005; 38: 665–677.

    Article  CAS  PubMed  Google Scholar 

  62. Lee HJ, Chung K, Lee H, Lee K, Lim JH, Song J . Downregulation of mitochondrial lon protease impairs mitochondrial function and causes hepatic insulin resistance in human liver SK-HEP-1 cells. Diabetologia 2011; 54: 1437–1446.

    Article  CAS  PubMed  Google Scholar 

  63. Kita K, Suzuki T, Ochi T . Diphenylarsinic acid promotes degradation of glutaminase C by mitochondrial Lon protease. J Biol Chem 2012; 287: 18163–18172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fishovitz J, Li M, Frase H, Hudak J, Craig S, Ko K et al. Active-site-directed chemical tools for profiling mitochondrial Lon protease. ACS Chem Biol 2011; 6: 781–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bayot A, Basse N, Lee I, Gareil M, Pirotte B, Bulteau AL et al. Towards the control of intracellular protein turnover: mitochondrial Lon protease inhibitors versus proteasome inhibitors. Biochimie 2008; 90: 260–269.

    Article  CAS  PubMed  Google Scholar 

  66. Yu AY, Houry WA . ClpP: a distinctive family of cylindrical energy-dependent serine proteases. FEBS Lett 2007; 581: 3749–3757.

    Article  CAS  PubMed  Google Scholar 

  67. Kang SG, Ortega J, Singh SK, Wang N, Huang NN, Steven AC et al. Functional proteolytic complexes of the human mitochondrial ATP-dependent protease, hClpXP. J Biol Chem 2002; 277: 21095–21102.

    Article  CAS  PubMed  Google Scholar 

  68. Bross P, Andresen BS, Knudsen I, Kruse TA, Gregersen N . Human ClpP protease: cDNA sequence, tissue-specific expression and chromosomal assignment of the gene. FEBS Lett 1995; 377: 249–252.

    Article  CAS  PubMed  Google Scholar 

  69. Corydon TJ, Bross P, Holst HU, Neve S, Kristiansen K, Gregersen N et al. A human homologue of Escherichia coli ClpP caseinolytic protease: recombinant expression, intracellular processing and subcellular localization. Biochem J 1998; 331: Pt 1 309–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Corydon TJ, Wilsbech M, Jespersgaard C, Andresen BS, Borglum AD, Pedersen S et al. Human and mouse mitochondrial orthologs of bacterial ClpX. Mamm Genome 2000; 11: 899–905.

    Article  CAS  PubMed  Google Scholar 

  71. Kang SG, Dimitrova MN, Ortega J, Ginsburg A, Maurizi MR . Human mitochondrial ClpP is a stable heptamer that assembles into a tetradecamer in the presence of ClpX. J Biol Chem 2005; 280: 35424–35432.

    Article  CAS  PubMed  Google Scholar 

  72. Kang SG, Maurizi MR, Thompson M, Mueser T, Ahvazi B . Crystallography and mutagenesis point to an essential role for the N-terminus of human mitochondrial ClpP. J Struct Biol 2004; 148: 338–352.

    Article  CAS  PubMed  Google Scholar 

  73. de Sagarra MR, Mayo I, Marco S, Rodriguez-Vilarino S, Oliva J, Carrascosa JL et al. Mitochondrial localization and oligomeric structure of HClpP, the human homologue of E. coli ClpP. J Mol Biol 1999; 292: 819–825.

    Article  CAS  PubMed  Google Scholar 

  74. Lowth BR, Kirstein-Miles J, Saiyed T, Brotz-Oesterhelt H, Morimoto RI, Truscott KN et al. Substrate recognition and processing by a Walker B mutant of the human mitochondrial AAA+ protein CLPX. J Struct Biol 2012; 179: 193–201.

    Article  CAS  PubMed  Google Scholar 

  75. Pickart CM, Cohen RE . Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 2004; 5: 177–187.

    Article  CAS  PubMed  Google Scholar 

  76. da Fonseca PC, He J, Morris EP . Molecular model of the human 26S proteasome. Mol Cell 2012; 46: 54–66.

    Article  CAS  PubMed  Google Scholar 

  77. Baker TA, Sauer RT . ClpXP an ATP-powered unfolding and protein-degradation machine. Biochim Biophys Acta 2012; 1823: 15–28.

    Article  CAS  PubMed  Google Scholar 

  78. Flynn JM, Neher SB, Kim YI, Sauer RT, Baker TA . Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 2003; 11: 671–683.

    Article  CAS  PubMed  Google Scholar 

  79. Neher SB, Villen J, Oakes EC, Bakalarski CE, Sauer RT, Gygi SP et al. Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon. Mol Cell 2006; 22: 193–204.

    Article  CAS  PubMed  Google Scholar 

  80. Keiler KC, Waller PR, Sauer RT . Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 1996; 271: 990–993.

    Article  CAS  PubMed  Google Scholar 

  81. Pellegrino MW, Nargund AM, Haynes CM . Signaling the mitochondrial unfolded protein response. Biochim Biophys Acta 2013; 1833: 410–416.

    Article  CAS  PubMed  Google Scholar 

  82. Haynes CM, Fiorese CJ, Lin YF . Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends Cell Biol 2013; S0962-8924: 00032–00039.

    Google Scholar 

  83. Luo B, Lee AS . The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene 2013; 32: 805–818.

    Article  CAS  PubMed  Google Scholar 

  84. Rath E, Berger E, Messlik A, Nunes T, Liu B, Kim SC et al. Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut 2012; 61: 1269–1278.

    Article  CAS  PubMed  Google Scholar 

  85. Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP, Ron D . Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 2004; 117: 4055–4066.

    Article  CAS  PubMed  Google Scholar 

  86. Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ . A mitochondrial specific stress response in mammalian cells. EMBO J 2002; 21: 4411–4419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Martinus RD, Garth GP, Webster TL, Cartwright P, Naylor DJ, Hoj PB et al. Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur J Biochem 1996; 240: 98–103.

    Article  CAS  PubMed  Google Scholar 

  88. Haynes CM, Yang Y, Blais SP, Neubert TA, Ron D . The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 2010; 37: 529–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Benedetti C, Haynes CM, Yang Y, Harding HP, Ron D . Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 2006; 174: 229–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Haynes CM, Petrova K, Benedetti C, Yang Y, Ron D . ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell 2007; 13: 467–480.

    Article  CAS  PubMed  Google Scholar 

  91. Nishigaki R, Osaki M, Hiratsuka M, Toda T, Murakami K, Jeang KT et al. Proteomic identification of differentially-expressed genes in human gastric carcinomas. Proteomics 2005; 5: 3205–3213.

    Article  CAS  PubMed  Google Scholar 

  92. Cole AC, Wang Z, Mattson R, Hurren R, Lin F, Gronda M et al. Targeting the mammalian mitochondrial Clpp (mClpP) as a novel therapeutic strategy for acute myeloid leukemia. Blood (ASH Annual Meeting Abstracts) 2012; 120: 3603.

    Google Scholar 

  93. Gersch M, Gut F, Korotkov VS, Lehmann J, Bottcher T, Rusch M et al. The mechanism of caseinolytic (ClpP) protease inhibition. Angew Chem Int Ed Engl 2013; 52: 3009–3014.

    Article  CAS  PubMed  Google Scholar 

  94. Bottcher T, Sieber SA . Beta-lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus. J Am Chem Soc 2008; 130: 14400–14401.

    Article  PubMed  CAS  Google Scholar 

  95. Szyk A, Maurizi MR . Crystal structure at 1.9A of E. coli ClpP with a peptide covalently bound at the active site. J Struct Biol 2006; 156: 165–174.

    Article  CAS  PubMed  Google Scholar 

  96. Brotz-Oesterhelt H, Beyer D, Kroll HP, Endermann R, Ladel C, Schroeder W et al. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 2005; 11: 1082–1087.

    Article  PubMed  CAS  Google Scholar 

  97. Li DH, Chung YS, Gloyd M, Joseph E, Ghirlando R, Wright GD et al. Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: a model for the ClpX/ClpA-bound state of ClpP. Chem Biol 2010; 17: 959–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee BG, Park EY, Lee KE, Jeon H, Sung KH, Paulsen H et al. Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nat Struct Mol Biol 2010; 17: 471–478.

    Article  CAS  PubMed  Google Scholar 

  99. Banfi S, Bassi MT, Andolfi G, Marchitiello A, Zanotta S, Ballabio A et al. Identification and characterization of AFG3L2, a novel paraplegin-related gene. Genomics 1999; 59: 51–58.

    Article  CAS  PubMed  Google Scholar 

  100. Casari G, De Fusco M, Ciarmatori S, Zeviani M, Mora M, Fernandez P et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 1998; 93: 973–983.

    Article  CAS  PubMed  Google Scholar 

  101. Atorino L, Silvestri L, Koppen M, Cassina L, Ballabio A, Marconi R et al. Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J Cell Biol 2003; 163: 777–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Koppen M, Metodiev MD, Casari G, Rugarli EI, Langer T . Variable and tissue-specific subunit composition of mitochondrial m-AAA protease complexes linked to hereditary spastic paraplegia. Mol Cell Biol 2007; 27: 758–767.

    Article  CAS  PubMed  Google Scholar 

  103. Gerdes F, Tatsuta T, Langer T . Mitochondrial AAA proteases–towards a molecular understanding of membrane-bound proteolytic machines. Biochim Biophys Acta 2012; 1823: 49–55.

    Article  CAS  PubMed  Google Scholar 

  104. Lee S, Augustin S, Tatsuta T, Gerdes F, Langer T, Tsai FT . Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease. J Biol Chem 2011; 286: 4404–4411.

    Article  CAS  PubMed  Google Scholar 

  105. Karlberg T, van den Berg S, Hammarstrom M, Sagemark J, Johansson I, Holmberg-Schiavone L et al. Crystal structure of the ATPase domain of the human AAA+ protein paraplegin/SPG7. PLoS One 2009; 4: e6975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Leonhard K, Guiard B, Pellecchia G, Tzagoloff A, Neupert W, Langer T . Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface. Mol Cell 2000; 5: 629–638.

    Article  CAS  PubMed  Google Scholar 

  107. Tauer R, Mannhaupt G, Schnall R, Pajic A, Langer T, H Feldmann . Yta10p, a member of a novel ATPase family in yeast, is essential for mitochondrial function. FEBS Lett 1994; 353: 197–200.

    Article  CAS  PubMed  Google Scholar 

  108. Pajic A, Tauer R, Feldmann H, Neupert W, Langer T . Yta10p is required for the ATP-dependent degradation of polypeptides in the inner membrane of mitochondria. FEBS Lett 1994; 353: 201–206.

    Article  CAS  PubMed  Google Scholar 

  109. Tzagoloff A, Yue J, Jang J, Paul MF . A new member of a family of ATPases is essential for assembly of mitochondrial respiratory chain and ATP synthetase complexes in Saccharomyces cerevisiae. J Biol Chem 1994; 269: 26144–26151.

    Article  CAS  PubMed  Google Scholar 

  110. Paul MF, Tzagoloff A . Mutations in RCA1 and AFG3 inhibit F1-ATPase assembly in Saccharomyces cerevisiae. FEBS Lett 1995; 373: 66–70.

    Article  CAS  PubMed  Google Scholar 

  111. Arlt H, Tauer R, Feldmann H, Neupert W, Langer T . The YTA10-12 complex, an AAA protease with chaperone-like activity in the inner membrane of mitochondria. Cell 1996; 85: 875–885.

    Article  CAS  PubMed  Google Scholar 

  112. Arlt H, Steglich G, Perryman R, Guiard B, Neupert W, Langer T . The formation of respiratory chain complexes in mitochondria is under the proteolytic control of the m-AAA protease. EMBO J 1998; 17: 4837–4847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Guelin E, Rep M, Grivell LA . Afg3p, a mitochondrial ATP-dependent metalloprotease, is involved in degradation of mitochondrially-encoded Cox1, Cox3, Cob, Su6, Su8 and Su9 subunits of the inner membrane complexes III, IV and V. FEBS Lett 1996; 381: 42–46.

    Article  CAS  Google Scholar 

  114. Augustin S, Gerdes F, Lee S, Tsai FT, Langer T, Tatsuta T . An intersubunit signaling network coordinates ATP hydrolysis by m-AAA proteases. Mol Cell 2009; 35: 574–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nolden M, Ehses S, Koppen M, Bernacchia A, Rugarli EI, Langer T . The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 2005; 123: 277–289.

    Article  CAS  PubMed  Google Scholar 

  116. Koppen M, Bonn F, Ehses S, Langer T . Autocatalytic processing of m-AAA protease subunits in mitochondria. Mol Biol Cell 2009; 20: 4216–4224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hornig-Do HT, Tatsuta T, Buckermann A, Bust M, Kollberg G, Rotig A et al. Nonsense mutations in the COX1 subunit impair the stability of respiratory chain complexes rather than their assembly. EMBO J 2012; 31: 1293–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zurita Rendon O, Shoubridge EA . Early complex I assembly defects result in rapid turnover of the ND1 subunit. Hum Mol Genet 2012; 21: 3815–3824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, Tondera D et al. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 2009; 187: 1023–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tatsuta T, Augustin S, Nolden M, Friedrichs B, Langer T . m-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria. EMBO J 2007; 26: 325–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bonn F, Tatsuta T, Petrungaro C, Riemer J, Langer T . Presequence-dependent folding ensures MrpL32 processing by the m-AAA protease in mitochondria. EMBO J 2011; 30: 2545–2556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME et al. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 2012; 13: 378–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Duvezin-Caubet S, Koppen M, Wagener J, Zick M, Israel L, Bernacchia A et al. OPA1 processing reconstituted in yeast depends on the subunit composition of the m-AAA protease in mitochondria. Mol Biol Cell 2007; 18: 3582–3590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ishihara N, Fujita Y, Oka T, Mihara K . Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 2006; 25: 2966–2977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Di Bella D, Lazzaro F, Brusco A, Plumari M, Battaglia G, Pastore A et al. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet 2010; 42: 313–321.

    Article  CAS  PubMed  Google Scholar 

  126. Pierson TM, Adams D, Bonn F, Martinelli P, Cherukuri PF, Teer JK et al. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLoS Genet 2011; 7: e1002325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bonn F, Pantakani K, Shoukier M, Langer T, Mannan AU . Functional evaluation of paraplegin mutations by a yeast complementation assay. Hum Mutat 2010; 31: 617–621.

    CAS  PubMed  Google Scholar 

  128. Maltecca F, Aghaie A, Schroeder DG, Cassina L, Taylor BA, Phillips SJ et al. The mitochondrial protease AFG3L2 is essential for axonal development. J Neurosci 2008; 28: 2827–2836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Maltecca F, De Stefani D, Cassina L, Consolato F, Wasilewski M, Scorrano L et al. Respiratory dysfunction by AFG3L2 deficiency causes decreased mitochondrial calcium uptake via organellar network fragmentation. Hum Mol Genet 2012; 21: 3858–3870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Maltecca F, Magnoni R, Cerri F, Cox GA, Quattrini A, Casari G . Haploinsufficiency of AFG3L2, the gene responsible for spinocerebellar ataxia type 28, causes mitochondria-mediated Purkinje cell dark degeneration. J Neurosci 2009; 29: 9244–9254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Almajan ER, Richter R, Paeger L, Martinelli P, Barth E, Decker T et al. AFG3L2 supports mitochondrial protein synthesis and Purkinje cell survival. J Clin Invest 2012; 122: 4048–4058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Martinelli P, La Mattina V, Bernacchia A, Magnoni R, Cerri F, Cox G et al. Genetic interaction between the m-AAA protease isoenzymes reveals novel roles in cerebellar degeneration. Hum Mol Genet 2009; 18: 2001–2013.

    Article  CAS  PubMed  Google Scholar 

  133. Ferreirinha F, Quattrini A, Pirozzi M, Valsecchi V, Dina G, Broccoli V et al. Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest 2004; 113: 231–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 2013; 12: 329–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Skrtic M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 2011; 20: 674–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 2013; 23: 302–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vazquez F, Lim JH, Chim H, Bhalla K, Girnun G, Pierce K et al. PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 2013; 23: 287–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Leu JI, Pimkina J, Frank A, Murphy ME, George DL . A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 2009; 36: 15–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jhaveri K, Modi S . HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol 2012; 65: 471–517.

    Article  CAS  PubMed  Google Scholar 

  140. Tian Q, Li T, Hou W, Zheng J, Schrum LW, Bonkovsky HL . Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells. J Biol Chem 2011; 286: 26424–26430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhang X, Zheng Y, Fried LE, Du Y, Montano SJ, Sohn A et al. Disruption of the mitochondrial thioredoxin system as a cell death mechanism of cationic triphenylmethanes. Free Radic Biol Med 2011; 50: 811–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Schimmer lab for insightful discussions and apologize to colleagues whose work may not have been cited due to space constraints. ADS is a Leukemia and Lymphoma Society Scholar in Clinical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A D Schimmer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goard, C., Schimmer, A. Mitochondrial matrix proteases as novel therapeutic targets in malignancy. Oncogene 33, 2690–2699 (2014). https://doi.org/10.1038/onc.2013.228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.228

Keywords

This article is cited by

Search

Quick links