Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Lgr5 and Lgr6 as markers to study adult stem cell roles in self-renewal and cancer

Abstract

The extended longevity of many mammals imposes the need for an effective tissue renewal capacity within the vital organs to maintain optimal function. Resident adult stem cells are instrumental in delivering this renewal capacity by virtue of their characteristic ability to maintain themselves long-term as a population (self-renewal), whilst also supplying all functional cell-lineages of the respective tissue (multipotency). The homeostatic activity of these adult stem cell reservoirs is tailored to meet the specific renewal requirements of individual tissues through a combination of intrinsic genetic programming and local cues delivered from the surrounding environment (the niche). Considerable phenotypic diversity therefore exists between adult stem cell populations in different organs, making it a considerable challenge to identify broadly applicable markers that facilitate their identification and characterization. However, the 7-transmembrane receptor, Lgr5 has recently gained prominence as a marker of Wnt-regulated adult stem cell populations in the hair-follicle, intestine and stomach. A closely-related protein, Lgr6 marks adult stem cells responsible for fueling the renewal of the sebaceous gland and skin. The discovery of these markers has already greatly improved our understanding of stem cell biology in these rapidly renewing tissues and has major implications for the identification and isolation of human adult stem cell populations for exploitation of their regenerative medicine potential in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Barker N, Bartfeld S, Clevers H . (2010a). Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell 7: 656–670.

    CAS  PubMed  Google Scholar 

  • Barker N, Clevers H . (2007). Tracking Down the Stem Cells of the Intestine: Strategies to Identify Adult Stem Cells. Gastroenterology 7: 656–670.

    Google Scholar 

  • Barker N, Clevers H . (2010). Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 138: 1681–1696.

    CAS  PubMed  Google Scholar 

  • Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH et al. (2010b). Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6: 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457: 608–611.

    CAS  PubMed  Google Scholar 

  • Barker N, van de Wetering M, Clevers H . (2008). The intestinal stem cell. Genes & Development 22: 1856–1864.

    CAS  Google Scholar 

  • Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449: 1003–1007.

    CAS  PubMed  Google Scholar 

  • Batlle E, Henderson JT, Beghtel H, van den Born MMW, Sancho E, Huls G et al. (2002). Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. cell 111: 251–263.

    CAS  PubMed  Google Scholar 

  • Bjerknes M, Cheng H . (1981). The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. Am J Anat 160: 77–91.

    CAS  PubMed  Google Scholar 

  • Bjerknes M, Cheng H . (2002). Multipotential stem cells in adult mouse gastric epithelium. Am J Physiol Gastrointest Liver Physiol 283: G767–G777.

    CAS  PubMed  Google Scholar 

  • Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E . (2004). Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118: 635–648.

    CAS  PubMed  Google Scholar 

  • Bonfanti P, Claudinot S, Amici AW, Farley A, Blackburn CC, Barrandon Y . (2010). Microenvironmental reprogramming of thymic epithelial cells to skin multipotent stem cells. Nature 466: 978–982.

    Article  CAS  PubMed  Google Scholar 

  • Breault DT, Min IM, Carlone DL, Farilla LG, Ambruzs DM, Henderson DE et al. (2008). Generation of mTert-GFP mice as a model to identify and study tissue progenitor cells. Proc Natl Acad Sci USA 105: 10420–10425.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns J . (1975). Mutation selection and the natural history of cancer. Nature 255: 197–200.

    CAS  PubMed  Google Scholar 

  • Carmon KS, Gong X, Lin Q, Thomas A, Liu Q . (2011). R-spondins function as ligands of the orphan recepto. Proc Natl Acad Sci U S A 108: 11452–11457.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Leblond CP . (1974a). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat 141: 461–479.

    CAS  PubMed  Google Scholar 

  • Cheng H, Leblond CP . (1974b). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat 141: 537–561.

    CAS  PubMed  Google Scholar 

  • Clements WM, Wang J, Sarnaik A, Kim OJ, MacDonald J, Fenoglio-Preiser C et al. (2002). beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res 62: 3503–3506.

    CAS  PubMed  Google Scholar 

  • Clevers H . (2011). The cancer stem cell: premises, promises and challenges. Nat Med 17: 313–319.

    CAS  PubMed  Google Scholar 

  • Cunningham D, Atkin W, Lenz H-J, Lynch HT, Minsky B, Nordlinger B et al. (2010). Colorectal cancer. Lancet 375: 1030–1047.

    PubMed  Google Scholar 

  • de Lau W, Barker N, Low TY, Koo BK, Li VS, Teunissen H et al. (2011). Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476: 293–297.

    Article  CAS  PubMed  Google Scholar 

  • Dignass AU, Sturm A . (2001). Peptide growth factors in the intestine. Eur J Gastroenterol Hepatol 13: 763–770.

    CAS  PubMed  Google Scholar 

  • Fearon ER, Vogelstein B . (1990). A genetic model for colorectal tumorigenesis. Cell 61: 759–767.

    CAS  PubMed  Google Scholar 

  • Flores I, Cayuela ML, Blasco MA . (2005). Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309: 1253–1256.

    CAS  PubMed  Google Scholar 

  • Fuchs E . (2009). The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137: 811–819.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs E, Horsley V . (2008). More than one way to skin. Genes & Development 22: 976–985.

    CAS  Google Scholar 

  • Fuller MT, Spradling AC . (2007). Male and female Drosophila germline stem cells: two versions of immortality. Science 316: 402–404.

    CAS  PubMed  Google Scholar 

  • Ghazizadeh S, Taichman LB . (2001). Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J 20: 1215–1222.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greco V, Chen T, Rendl M, Schober M, Pasolli HA, Stokes N et al. (2009). A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4: 155–169.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green H . (2008). The birth of therapy with cultured cells. BioEssays 30: 897–903.

    PubMed  Google Scholar 

  • Haramis A-PG, Begthel H, van den Born M, van Es J, Jonkheer S, Offerhaus GJA et al. (2004). De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303: 1684–1686.

    CAS  PubMed  Google Scholar 

  • Hsu SY, Kudo M, Chen T, Nakabayashi K, Bhalla A, van der Spek PJ et al. (2000). The three subfamilies of leucine-rich repeat-containing G protein-coupled receptors (LGR): identification of LGR6 and LGR7 and the signaling mechanism for LGR7. Mol Endocrinol 14: 1257–1271.

    CAS  PubMed  Google Scholar 

  • Hsu SY, Liang SG, Hsueh AJ . (1998). Characterization of two LGR genes homologous to gonadotropin and thyrotropin receptors with extracellular leucine-rich repeats and a G protein-coupled, seven-transmembrane region. Mol Endocrinol 12: 1830–1845.

    CAS  PubMed  Google Scholar 

  • Ireland H, Kemp R, Houghton C, Howard L, Clarke AR, Sansom OJ et al. (2004). Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-catenin. Gastroenterology 126: 1236–1246.

    CAS  PubMed  Google Scholar 

  • Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H et al. (2008). Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40: 1291–1299.

    CAS  PubMed  Google Scholar 

  • Karam SM . (1999). Lineage commitment and maturation of epithelial cells in the gut. Front Biosci 4: D286–D298.

    CAS  PubMed  Google Scholar 

  • Karam SM, Leblond CP . (1993). Dynamics of epithelial cells in the corpus of the mouse stomach. I. Identification of proliferative cell types and pinpointing of the stem cell. Anat Rec 236: 259–279.

    CAS  PubMed  Google Scholar 

  • Kasper M, Jaks V, Are A, Bergstrom A, Schwager A, Barker N et al. (2011). Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proc Natl Acad Sci U S A 108: 4099–4104.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazanskaya O, Glinka A, del Barco Barrantes I, Stannek P, Niehrs C, Wu W . (2004). R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. Dev Cell 7: 525–534.

    CAS  PubMed  Google Scholar 

  • Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A . (2007). Tumor growth need not be driven by rare cancer stem cells. Science 317: 337.

    CAS  PubMed  Google Scholar 

  • Kemphues KJ, Priess JR, Morton DG, Cheng NS . (1988). Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52: 311–320.

    CAS  PubMed  Google Scholar 

  • Kiel MJ, He S, Ashkenazi R, Gentry SN, Teta M, Kushner JA et al. (2007). Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449: 238–242.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K-A, Kakitani M, Zhao J, Oshima T, Tang T, Binnerts M et al. (2005). Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 309: 1256–1259.

    CAS  PubMed  Google Scholar 

  • Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ et al. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19: 379–383.

    CAS  PubMed  Google Scholar 

  • Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275: 1784–1787.

    CAS  PubMed  Google Scholar 

  • Leblond CP, Stevens CE . (1948). The constant renewal of the intestinal epithelium in the albino rat. Anat Rec 100: 357–377.

    CAS  PubMed  Google Scholar 

  • Li L, Clevers H . (2010). Coexistence of quiescent and active adult stem cells in mammals. Science 327: 542–545.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Xie T . (2005). Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21: 605–631.

    CAS  PubMed  Google Scholar 

  • Lin SA, Barker N . (2011). Gastrointestinal stem cells in self-renewal and cancer. J Gastroenterol 46: 1039–1055.

    PubMed  Google Scholar 

  • Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA et al. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450: 56–62.

    CAS  PubMed  Google Scholar 

  • Lopez-Garcia C, Klein AM, Simons BD, Winton DJ . (2010). Intestinal stem cell replacement follows a pattern of neutral drift. Science 330: 822–825.

    CAS  PubMed  Google Scholar 

  • Marshman E, Booth C, Potten CS . (2002). The intestinal epithelial stem cell. Bioessays 24: 91–98.

    PubMed  Google Scholar 

  • Mazerbourg S, Bouley DM, Sudo S, Klein CA, Zhang JV, Kawamura K et al. (2004). Leucine-rich repeat-containing, G protein-coupled receptor 4 null mice exhibit intrauterine growth retardation associated with embryonic and perinatal lethality. Mol Endocrinol 18: 2241–2254.

    CAS  PubMed  Google Scholar 

  • Merlos-Suárez A, Barriga FM, Jung P, Iglesias M, Céspedes MV, Rossell D et al. (2011). The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8: 511–524.

    PubMed  Google Scholar 

  • Montgomery RK, Carlone DL, Richmond CA, Farilla L, Kranendonk MEG, Henderson DE et al. (2011). Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci USA 108: 179–184.

    CAS  PubMed  Google Scholar 

  • Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S et al. (2004). Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22: 411–417.

    CAS  PubMed  Google Scholar 

  • Mustata RC, Van Loy T, Lefort A, Libert F, Strollo S, Vassart G et al. (2011). Lgr4 is required for Paneth cell differentiation and maintenance of intestinal stem cells ex vivo. EMBO Rep 12: 558–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Brien CA, Pollett A, Gallinger S, Dick JE . (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–110.

    CAS  PubMed  Google Scholar 

  • Offerhaus GJ, Entius MM, Giardiello FM . (1999). Upper gastrointestinal polyps in familial adenomatous polyposis. Hepatogastroenterology 46: 667–669.

    CAS  PubMed  Google Scholar 

  • Orford KW, Scadden DT . (2008). Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9: 115–128.

    CAS  PubMed  Google Scholar 

  • Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y . (2001). Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104: 233–245.

    CAS  PubMed  Google Scholar 

  • Park WS, Oh RR, Park JY, Lee SH, Shin MS, Kim YS et al. (1999). Frequent somatic mutations of the beta-catenin gene in intestinal-type gastric cancer. Cancer Res 59: 4257–4260.

    CAS  PubMed  Google Scholar 

  • Pinto D, Gregorieff A, Begthel H, Clevers H . (2003). Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17: 1709–1713.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potten CS, Kovacs L, Hamilton E . (1974). Continuous labelling studies on mouse skin and intestine. Cell Tissue Kinet 7: 271–283.

    CAS  PubMed  Google Scholar 

  • Potten CS . (1977). Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. Nature 269: 518–521.

    CAS  PubMed  Google Scholar 

  • Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN et al. (1992). APC mutations occur early during colorectal tumorigenesis. Nature 359: 235–237.

    CAS  PubMed  Google Scholar 

  • Preston SL, Wong WM, Chan AO, Poulsom R, Jeffery R, Goodlad RA et al. (2003). Bottom-up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission. Cancer Res 63: 3819–3825.

    CAS  PubMed  Google Scholar 

  • Quyn AJ, Appleton PL, Carey FA, Steele RJC, Barker N, Clevers H et al. (2010). Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue. Cell Stem Cell 6: 175–181.

    CAS  PubMed  Google Scholar 

  • Rhyu MS, Jan LY, Jan YN . (1994). Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76: 477–491.

    CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature 445: 111–115.

    CAS  PubMed  Google Scholar 

  • Rochat A, Kobayashi K, Barrandon Y . (1994). Location of stem cells of human hair follicles by clonal analysis. Cell 76: 1063–1073.

    CAS  PubMed  Google Scholar 

  • Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P . (1997). Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 275: 1790–1792.

    CAS  PubMed  Google Scholar 

  • Sancho E, Batlle E, Clevers H . (2003). Live and let die in the intestinal epithelium. Curr Opin Cell Biol 15: 763–770.

    CAS  PubMed  Google Scholar 

  • Sancho E, Batlle E, Clevers H . (2004). Signaling pathways in intestinal development and cancer. Annu Rev Cell Dev Biol 20: 695–723.

    CAS  PubMed  Google Scholar 

  • Sangiorgi E, Capecchi MR . (2008). Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40: 915–920.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M et al. (2010). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 459: 262–265.

    Google Scholar 

  • Sato T, Vries R, Snippert H, van De Wetering M, Barker N, Stange D et al. (2009). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 469: 415–418.

    Google Scholar 

  • Schepers AG, Vries R, van den Born M, van de Wetering M, Clevers H . (2011). Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J 30: 1104–1109.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shih IM, Wang TL, Traverso G, Romans K, Hamilton SR, Ben-Sasson S et al. (2001). Top-down morphogenesis of colorectal tumors. Proc Natl Acad Sci U S A 98: 2640–2645.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snippert HJ, Clevers H . (2011). Tracking adult stem cells. EMBO Rep 12: 113–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N et al. (2010a). Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327: 1385–1389.

    CAS  PubMed  Google Scholar 

  • Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C et al. (2010b). Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143: 134–144.

    CAS  PubMed  Google Scholar 

  • Soriano P . (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21: 70–71.

    CAS  PubMed  Google Scholar 

  • Spana EP, Kopczynski C, Goodman CS, Doe CQ . (1995). Asymmetric localization of numb autonomously determines sibling neuron identity in the Drosophila CNS. Development 121: 3489–3494.

    CAS  PubMed  Google Scholar 

  • Takahashi H, Ishii H, Nishida N, Takemasa I, Mizushima T, Ikeda M et al. (2011). Significance of Lgr5(+ve) cancer stem cells in the colon and rectum. Ann Surg Oncol 18: 1166–1174.

    PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872.

    CAS  PubMed  Google Scholar 

  • Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM . (2000). Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102: 451–461.

    CAS  PubMed  Google Scholar 

  • Tomita H, Yamada Y, Oyama T, Hata K, Hirose Y, Hara A et al. (2007). Development of gastric tumors in Apc(Min/+) mice by the activation of the beta-catenin/Tcf signaling pathway. Cancer Res 67: 4079–4087.

    CAS  PubMed  Google Scholar 

  • Trempus CS, Morris RJ, Bortner CD, Cotsarelis G, Faircloth RS, Reece JM et al. (2003). Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol 120: 501–511.

    CAS  PubMed  Google Scholar 

  • Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M et al. (2004). Defining the epithelial stem cell niche in skin. Science 303: 359–363.

    CAS  PubMed  Google Scholar 

  • Uchida H, Yamazaki K, Fukuma M, Yamada T, Hayashida T, Hasegawa H et al. (2010). Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 in colorectal cancer. Cancer Sci 101: 1731–1737.

    CAS  PubMed  Google Scholar 

  • van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A et al. (2002). The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111: 241–250.

    CAS  PubMed  Google Scholar 

  • van der Flier LG, Clevers H . (2009a). Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71: 241–260.

    CAS  PubMed  Google Scholar 

  • Van der Flier L, Sabates–Bellver J, Oving I . (2007). The Intestinal Wnt/TCF Signature. Gastroenterology 132: 628–632.

    CAS  PubMed  Google Scholar 

  • van der Flier LG, van Gijn ME, Hatzis P, Kujala P, Haegebarth A, Stange DE et al. (2009b). Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136: 903–912.

    CAS  PubMed  Google Scholar 

  • van Es JH, Jay P, Gregorieff A, van Gijn ME, Jonkheer S, Hatzis P et al. (2005). Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 7: 381–386.

    CAS  PubMed  Google Scholar 

  • Van Schoore G, Mendive F, Pochet R, Vassart G . (2005). Expression pattern of the orphan receptor LGR4/GPR48 gene in the mouse. Histochem Cell Biol 124: 35–50.

    CAS  PubMed  Google Scholar 

  • Visvader JE . (2011). Cells of origin in cancer. Nature 469: 314–322.

    CAS  PubMed  Google Scholar 

  • Visvader JE, Lindeman GJ . (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8: 755–768.

    CAS  PubMed  Google Scholar 

  • Walker F, Zhang HH, Odorizzi A, Burgess AW . (2011). LGR5 Is a Negative Regulator of Tumourigenicity, Antagonizes Wnt Signalling and Regulates Cell Adhesion in Colorectal Cancer Cell Lines. PLoS ONE 6: e22733.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917–1920.

    CAS  PubMed  Google Scholar 

  • Zeki SS, Graham TA, Wright NA . (2011). Stem cells and their implications for colorectal cancer. Nat Rev Gastroenterol Hepatol 8: 90–100.

    PubMed  Google Scholar 

  • Zhang YV, Cheong J, Ciapurin N, McDermitt DJ, Tumbar T . (2009). Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell 5: 267–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT et al. (2009). Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457: 603–607.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Barker.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leushacke, M., Barker, N. Lgr5 and Lgr6 as markers to study adult stem cell roles in self-renewal and cancer. Oncogene 31, 3009–3022 (2012). https://doi.org/10.1038/onc.2011.479

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.479

Keywords

This article is cited by

Search

Quick links