Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Human FEM1B is required for Rad9 recruitment and CHK1 activation in response to replication stress

Abstract

Human checkpoint kinase 1 (CHK1) is an essential kinase required to preserve genome stability, and is activated by DNA replication blockage through the ataxia-telangiectasia-mutated-and-Rad3-related (ATR)/ATRIP-signaling pathway. In this report, we show that a novel CHK1-interacting protein, FEM1B (human homologue of the Caenorhabditis elegans sex determination fem1 protein), identified by a yeast two-hybrid screen, is involved in the activation of CHK1 by replication stress. Depletion of FEM1B by small interfering RNA in cancer cells impairs the activation of CHK1 kinase activity and attenuates the induction of CHK1 Ser345 phosphorylation upon replication interference. It is to be noted that, CHK2 Thr68 phosphorylation is not altered by FEM1B downregulation. By fractionation, we further demonstrated that FEM1B is able to associate with chromatin, and such association facilitates chromatin loading of the Rad9 protein. Consistently, ATR activity is poorly maintained in FEM1B knockdown cells; and FEM1B-ablated cells are as sensitive to replication block as CHK1-depleted cells. Our study has uncovered an adaptor protein FEM1B, which acts as a bridge linking CHK1 and Rad9, thus facilitating checkpoint signaling induced by replication stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bartek J, Lukas J . (2007). DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19: 238–245.

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas C, Lucas J . (2004). Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 5: 792–804.

    Article  CAS  PubMed  Google Scholar 

  • Chan S-L, Tan K-O, Zhang L, Yee KSY, Ronca F, Chan M-Y et al. (1999). FiAα, a death receptor-binding protein homologous to the Caenorhabditiselegans sex-determining protein, FEM-1, is a caspase substrate that mediates apoptosis. J Biol Chem 274: 32461–32468.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Poon RY . (2008). The multiple checkpoint functions of CHK1 and CHK2 in maintenance of genome stability. Front Biosci 13: 5016–5029.

    CAS  PubMed  Google Scholar 

  • Chini CCS, Wood J, Chen J . (2006). Chk1 is required to maintain Claspin stability. Oncogene 25: 4165–4171.

    Article  CAS  PubMed  Google Scholar 

  • Chini CCS, Chen J . (2003). Human Claspin is required for replication checkpoint control. J Biol Chem 278: 30057–30062.

    Article  CAS  PubMed  Google Scholar 

  • Cimprich KA, Cortez D . (2008). ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9: 616–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dart DA, Adams KE, Lakin ND . (2004). Recruitment of the cell cycle checkpoint kinase ATR to chromatin during S-phase. J Biol Chem 279: 16433–16440.

    Article  CAS  PubMed  Google Scholar 

  • Delacroix S, Wagner JM, Kobayashi M, Yamamoto K, Karnitz LM . (2007). The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 15: 1472–1477.

    Article  Google Scholar 

  • Gaudet J, VanderElst I, Spence AM . (1996). Post-transcriptional regulation of sex determination in Caenorhabditis elegans: widespread expression of the sex-determining gene fem-1 in both sexes. Mol Biol Cell 7: 1107–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorina S, Pavletich NP . (1996). Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274: 1001–1005.

    Article  CAS  PubMed  Google Scholar 

  • Han Z, Wei W, Dunaway S, Darnowski JW, Calabresi P, Sedivy J et al. (2002). Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J Biol Chem 277: 17154–17160.

    Article  CAS  PubMed  Google Scholar 

  • Jamil S, Mojtabavi S, Hojabropour P, Cheah S, Duronio V . (2008). An essential role for MCL-1 in ATR-mediated Chk1 phosphorylation. Mol Biol Cell 19: 3212–3220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffrey PD, Tong L, Pavletich NP . (2000). Structural basis of inhibition of CDK-cyclin complexes by INK4 inhibitors. Genes Dev 14: 3115–3125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamura T, Maenaka K, Kotoshiba S, Muatsumoto M, Kohda D, Conaway RC et al. (2004). VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes Dev 18: 3055–3065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krakow D, Sebald E, King LM, Cohn DH . (2001). Identification of human FEM1A, the ortholog of a C. elegans sex-defferentiation gene. Gene 279: 213–219.

    Article  CAS  PubMed  Google Scholar 

  • Kumagai A, Dunphy WG . (2003). Repeated phosphopeptide motifs in Claspin mediate the regulated binding of Chk1. Nat Cell Biol 5: 161–165.

    Article  CAS  PubMed  Google Scholar 

  • Kumagai A, Dunphy WG . (2000). Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell 6: 839–849.

    Article  CAS  PubMed  Google Scholar 

  • Kumagai A, Kim S-M, Dunphy WG . (2004). Claspin and the activated form of ATR-ATRIP collaborate in the activation of Chk1. J Biol Chem 279: 49599–49608.

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kumgai A, Dunphy WG . (2007). The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem 282: 28036–28044.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Mahajan A, Tsai M-D . (2006). Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry 45: 15168–15178.

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Ventura-Holman T, Li J, McMurray RW, Subauste JS, Maher JF . (2005). Abnormal glucose homeostasis and pancreatic islet function in mice with inactivation of the Fem1b gene. Mol Cell Biol 25: 6570–6577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machida YJ, Dutta A . (2005). Cellular checkpoint mechanisms monitoring proper initiation of DNA replication. J Biol Chem 280: 6253–6256.

    Article  CAS  PubMed  Google Scholar 

  • Niida H, Nakanishi M . (2006). DNA damage checkpoints in mammals. Mutagenesis 21: 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Ou Y-H, Chung P-H, Hsu F-F, Sun T-P, Chang W-Y, Shieh S-Y . (2007). The candidate tumor suppressor BTG3 is a transcriptional target of p53 that inhibits E2F1. EMBO J 26: 3968–3980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou Y-H, Chung P-H, Sun T-P, Shieh S-Y . (2005). p53 C-terminal phosphorylation by CHK1 and CHK2 participates in the regulation of DNA damage-induced C-terminal acetylation. Mol Biol Cell 16: 1684–1695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez R, Meuth M . (2006). Chk1 and p21 cooperate to prevent apoptosis during DNA replication fork stress. Mol Biol Cell 17: 402–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo AA, Tong L, Lee J-O, Jeffrey PD, Pavletich NP . (1998). Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature 395: 237–243.

    Article  CAS  PubMed  Google Scholar 

  • Shieh S-Y, Ahn J, Tamai K, Taya Y, Prives C . (2000). The human homologues of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage inducible sites. Genes Dev 14: 289–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura-Holman T, Lu D, Si X, Izevbigie EB, Maher JF . (2003). The Fem1c genes: conserved members of the Fem1 gene family in vertebrates. Gene 314: 133–139.

    Article  CAS  PubMed  Google Scholar 

  • Ventura-Holman T, Maher JF . (2000). Sequence, organization, and expression of the human FEM1B gene. Biochem Biophys Res Commun 267: 317–320.

    Article  CAS  PubMed  Google Scholar 

  • Ventura-Holman T, Seldin MF, Li W, Maher JF . (1998). The murine Fem1 gene family: homologs of the Caenorhabditis elegans sex-determination protein FEM-1. Genomics 54: 221–230.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zou L, Lu T, Bao S, Hurov KE, Hittelman WN et al. (2006). Rad17 phosphorylation is required for Claspin recruitment and Chk1 activation in response to replication stress. Mol Cell 23: 331–341.

    Article  PubMed  Google Scholar 

  • Wei J-H, Chou Y-F, Ou Y-H, Yeh Y-H, Tyan S-W, Sun T-P et al. (2005). TTK/hMps1 participates in the regulation of DNA damage checkpoint response by phosphorylating CHK2 on Thr68. J Biol Chem 280: 7748–7757.

    Article  CAS  PubMed  Google Scholar 

  • Yoo HY, Jeong S-Y, Dunphy WG . (2006). Site-specific phosphorylation of a checkpoint mediator protein controls its responses to different DNA structures. Genes Dev 20: 772–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Piwnica-Worms H . (2001). ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21: 4129–4139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou L, Cortez D, Elledge SJ . (2002). Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev 16: 198–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou L, Elledge SJ . (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300: 1542–1548.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Shiaw-Wei Tyan for his assistance with yeast library screening. We are also grateful to Drs Hsiu-Ming Shih for the human testis cDNA library; Victor Yu for pXJ-HA-F1Aα; Carol Prives for GST-Cdc25C200−256; Howard Lieberman for Rad9 cDNA; Randal Tibbetts and Robert Abraham for Flag-ATR. This study was supported by funds from Academia Sinica, Taiwan to S-Y Shieh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-Y Shieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, TP., Shieh, SY. Human FEM1B is required for Rad9 recruitment and CHK1 activation in response to replication stress. Oncogene 28, 1971–1981 (2009). https://doi.org/10.1038/onc.2009.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.58

Keywords

This article is cited by

Search

Quick links