Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The tumor suppressor ING3 is degraded by SCFSkp2-mediated ubiquitin–proteasome system

Abstract

The inhibitor of growth family member 3 (ING3) has been shown to modulate transcription, cell cycle control and apoptosis. We previously reported that nuclear ING3 expression was remarkably reduced in melanomas, which correlated with a poorer patient survival, suggesting that decreased ING3 expression may be associated with melanoma progression. However, the mechanism of diminished ING3 expression in melanoma is not clear. Here we show that ING3 level was decreased in metastatic melanoma cells because of a rapid degradation. Furthermore, we showed that ING3 undergoes degradation through the ubiquitin–proteasome pathway. ING3 physically interacts with subunits of E3 ligase Skp1-Cullin-F-box protein complex (SCF complex). Knockdown of F-box protein S-phase kinase-associated protein 2 (Skp2) reduces the ubiquitination of ING3 and significantly stabilizes ING3 in melanoma cells. In addition, lysine 96 residue is essential for ING3 ubiquitination as its mutation to arginine dramatically abrogated ING3 degradation. Disruption of ING3 degradation stimulated ING3-induced G1 cell-cycle arrest and enhanced ultraviolet-induced apoptosis. Taken together, our data show that ING3 is degraded by the ubiquitin–proteasome pathway through the SCFSkp2 complex and interruption of ING3 degradation enhances the tumor-suppressive function of ING3, which provides a potential cancer therapeutic approach by interfering ING3 degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ang XL, Wade Harper J . (2005). SCF-mediated protein degradation and cell cycle control. Oncogene 24: 2860–2870.

    Article  CAS  PubMed  Google Scholar 

  • Asher G, Tsvetkov P, Kahana C, Shaul Y . (2005). A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev 19: 316–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Shahar S, Komlosh A, Nadav E, Shaked I, Ziv T, Admon A et al. (1999). 26 S proteasome-mediated production of an authentic major histocompatibility class I-restricted epitope from an intact protein substrate. J Biol Chem 274: 21963–21972.

    Article  CAS  PubMed  Google Scholar 

  • Burger AM, Seth AK . (2004). The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur J Cancer 40: 2217–2229.

    Article  CAS  PubMed  Google Scholar 

  • Chiappetta G, De Marco C, Quintiero A, Califano D, Gherardi S, Malanga D et al. (2007). Overexpression of the S-phase kinase-associated protein 2 in thyroid cancer. Endocr Relat Cancer 14: 405–420.

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover A, Ben-Saadon R . (2004). N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol 14: 103–106.

    Article  CAS  PubMed  Google Scholar 

  • Doyon Y, Selleck W, Lane WS, Tan S, Cote J . (2004). Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 24: 1884–1896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fadlelmola FM, Zhou M, de Leeuw RJ, Dosanjh NS, Harmer K, Huntsman D et al. (2008). Sub-megabase resolution tiling (SMRT) array-based comparative genomic hybridization profiling reveals novel gains and losses of chromosomal regions in Hodgkin lymphoma and anaplastic large cell lymphoma cell lines. Mol Cancer 7: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frescas D, Pagano M . (2008). Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 8: 438–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garate M, Campos EI, Bush JA, Xiao H, Li G . (2007). Phosphorylation of the tumor suppressor p33(ING1b) at Ser-126 influences its protein stability and proliferation of melanoma cells. FASEB J 21: 3705–3716.

    Article  CAS  PubMed  Google Scholar 

  • Garate M, Wong RP, Campos EI, Wang Y, Li G . (2008). NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of the tumour suppressor p33(ING1b). EMBO Rep 9: 576–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg AL . (2007). Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 35: 12–17.

    Article  CAS  PubMed  Google Scholar 

  • Gong W, Russell M, Suzuki K, Riabowol K . (2006). Subcellular targeting of p33ING1b by phosphorylation-dependent 14-3-3 binding regulates p21WAF1 expression. Mol Cell Biol 26: 2947–2954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunduz M, Beder LB, Gunduz E, Nagatsuka H, Fukushima K, Pehlivan D et al. (2008). Downregulation of ING3 mRNA expression predicts poor prognosis in head and neck cancer. Cancer Sci 99: 531–538.

    Article  CAS  PubMed  Google Scholar 

  • Gunduz M, Ouchida M, Fukushima K, Ito S, Jitsumori Y, Nakashima T et al. (2002). Allelic loss and reduced expression of the ING3, a candidate tumor suppressor gene at 7q31, in human head and neck cancers. Oncogene 21: 4462–4470.

    Article  CAS  PubMed  Google Scholar 

  • He GH, Helbing CC, Wagner MJ, Sensen CW, Riabowol K . (2005). Phylogenetic analysis of the ING family of PHD finger proteins. Mol Biol Evol 22: 104–116.

    Article  CAS  PubMed  Google Scholar 

  • Hershko DD . (2008). Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer. Cancer 112: 1415–1424.

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Geyer RK, Howard D, Yu ZK, Maki CG . (2001). MDM2 can promote the ubiquitination, nuclear export, and degradation of p53 in the absence of direct binding. J Biol Chem 276: 45255–45260.

    Article  CAS  PubMed  Google Scholar 

  • Katagiri Y, Hozumi Y, Kondo S . (2006). Knockdown of Skp2 by siRNA inhibits melanoma cell growth in vitro and in vivo. J Dermatol Sci 42: 215–224.

    Article  CAS  PubMed  Google Scholar 

  • Kuo ML, den Besten W, Bertwistle D, Roussel MF, Sherr CJ . (2004). N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes Dev 18: 1862–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Martinka M, Li G . (2008). Role of ING4 in human melanoma cell migration, invasion, and patient survival. Carcinogenesis 29: 1373–1379.

    Article  PubMed  Google Scholar 

  • Li Q, Murphy M, Ross J, Sheehan C, Carlson JA . (2004). Skp2 and p27kip1 expression in melanocytic nevi and melanoma: an inverse relationship. J Cutan Pathol 31: 633–642.

    Article  PubMed  Google Scholar 

  • Lu F, Dai DL, Martinka M, Ho V, Li G . (2006). Nuclear ING2 expression is reduced in human cutaneous melanomas. Br J Cancer 95: 80–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mani A, Gelmann EP . (2005). The ubiquitin–proteasome pathway and its role in cancer. J Clin Oncol 23: 4776–4789.

    Article  CAS  PubMed  Google Scholar 

  • Masuda TA, Inoue H, Sonoda H, Mine S, Yoshikawa Y, Nakayama K et al. (2002). Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res 62: 3819–3825.

    CAS  PubMed  Google Scholar 

  • Nagashima M, Shiseki M, Pedeux RM, Okamura S, Kitahama-Shiseki M, Miura K et al. (2003). A novel PHD-finger motif protein, p47ING3, modulates p53-mediated transcription, cell cycle control, and apoptosis. Oncogene 22: 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Nalepa G, Rolfe M, Harper JW . (2006). Drug discovery in the ubiquitin–proteasome system. Nat Rev Drug Discov 5: 596–613.

    Article  CAS  PubMed  Google Scholar 

  • Nandi D, Tahiliani P, Kumar A, Chandu D . (2006). The ubiquitin–proteasome system. J Biosci 31: 137–155.

    Article  CAS  PubMed  Google Scholar 

  • Newton K, Vucic D . (2007). Ubiquitin ligases in cancer: ushers for degradation. Cancer Invest 25: 502–513.

    Article  CAS  PubMed  Google Scholar 

  • Ng KC, Campos EI, Martinka M, Li G . (2004). XAF1 expression is significantly reduced in human melanoma. J Invest Dermatol 123: 1127–1134.

    Article  CAS  PubMed  Google Scholar 

  • Nouman GS, Anderson JJ, Mathers ME, Leonard N, Crosier S, Lunec J et al. (2002). Nuclear to cytoplasmic compartment shift of the p33ING1b tumour suppressor protein is associated with malignancy in melanocytic lesions. Histopathology 40: 360–366.

    Article  CAS  PubMed  Google Scholar 

  • Schwechheimer C, Calderon Villalobos LI . (2004). Cullin-containing E3 ubiquitin ligases in plant development. Curr Opin Plant Biol 7: 677–686.

    Article  CAS  PubMed  Google Scholar 

  • Shah IM, Di Napoli M . (2007). The ubiquitin–proteasome system and proteasome inhibitors in central nervous system diseases. Cardiovasc Hematol Disord Drug Targets 7: 250–273.

    Article  CAS  PubMed  Google Scholar 

  • Sonoda H, Inoue H, Ogawa K, Utsunomiya T, Masuda TA, Mori M . (2006). Significance of skp2 expression in primary breast cancer. Clin Cancer Res 12: 1215–1220.

    Article  CAS  PubMed  Google Scholar 

  • Sumimoto H, Hirata K, Yamagata S, Miyoshi H, Miyagishi M, Taira K et al. (2006). Effective inhibition of cell growth and invasion of melanoma by combined suppression of BRAF (V599E) and Skp2 with lentiviral RNAi. Int J Cancer 118: 472–476.

    Article  CAS  PubMed  Google Scholar 

  • Tsai KW, Tseng HC, Lin WC . (2008). Two wobble-splicing events affect ING4 protein subnuclear localization and degradation. Exp Cell Res 314: 3130–3141.

    Article  CAS  PubMed  Google Scholar 

  • von Mikecz A . (2006). The nuclear ubiquitin–proteasome system. J Cell Sci 119: 1977–1984.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Dai DL, Martinka M, Li G . (2007). Prognostic significance of nuclear ING3 expression in human cutaneous melanoma. Clin Cancer Res 13: 4111–4116.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li G . (2006). ING3 promotes UV-induced apoptosis via Fas/caspase-8 pathway in melanoma cells. J Biol Chem 281: 11887–11893.

    Article  CAS  PubMed  Google Scholar 

  • Woenckhaus C, Maile S, Uffmann S, Bansemir M, Dittberner T, Poetsch M et al. (2005). Expression of Skp2 and p27KIP1 in naevi and malignant melanoma of the skin and its relation to clinical outcome. Histol Histopathol 20: 501–508.

    CAS  PubMed  Google Scholar 

  • Yang G, Ayala G, De Marzo A, Tian W, Frolov A, Wheeler TM et al. (2002). Elevated Skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin Cancer Res 8: 3419–3426.

    CAS  PubMed  Google Scholar 

  • Yokoi S, Yasui K, Mori M, Iizasa T, Fujisawa T, Inazawa J . (2004). Amplification and overexpression of SKP2 are associated with metastasis of non-small-cell lung cancers to lymph nodes. Am J Pathol 165: 175–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zetter BR, Mangold U . (2005). Ubiquitin-independent degradation and its implication in cancer. Future Oncol 1: 567–570.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully thank Drs HR Byers, AP Albino, H Silver, R Zhang, M Pagano, S Sun and J Hsieh for kindly providing the materials. This study was supported by Cancer Research Society, the Canadian Institutes of Health Research (MOP-93810) and the Canadian Dermatology Foundation (GL). GC is a recipient of Postdoctoral Trainee Award from Michael Smith Foundation for Health Research. YW is a recipient of Roman M Babicki Fellowship from the University of British Columbia and a research fellow of the Terry Fox Foundation through an award from the National Cancer Institute of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Li.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Wang, Y., Garate, M. et al. The tumor suppressor ING3 is degraded by SCFSkp2-mediated ubiquitin–proteasome system. Oncogene 29, 1498–1508 (2010). https://doi.org/10.1038/onc.2009.424

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.424

Keywords

This article is cited by

Search

Quick links