Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dose-dependent modulation of HIF-1α/sima controls the rate of cell migration and invasion in Drosophila ovary border cells

Abstract

The role of the hypoxic response during metastasis was analysed in migrating border cells of the Drosophila ovary. Acute exposure to 1% O2 delayed or blocked border cell migration (BCM), whereas prolonged exposure resulted in the first documented accelerated BCM phenotype. Similarly, manipulating the expression levels of sima, the Drosophila hypoxia-inducible factor (HIF)-1α ortholog, revealed that Sima can either block or restore BCM in a dose-dependent manner. In contrast, over-expression of Vhl (Drosophila von Hippel–Lindau) generated a range of phenotypes, including blocked, delayed and accelerated BCM, whereas over-expression of hph (Drosophila HIF prolyl hydroxylase) only accelerated BCM. Mosaic clone analysis of sima or tango (HIF-1β ortholog) mutants revealed that cells lacking Hif-1 transcriptional activity were preferentially detected in the leading cell position of the cluster, resulting in either a delay or acceleration of BCM. Moreover, in sima mutant cell clones, there was reduced expression of nuclear slow border cells (Slbo) and basolateral DE-cadherin, proteins essential for proper BCM. These results show that Sima levels define the rate of BCM in part through regulation of Slbo and DE-cadherin, and suggest that dynamic regulation of Hif-1 activity is necessary to maintain invasive potential of migrating epithelial cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adryan B, Decker HJ, Papas TS, Hsu T . (2000). Tracheal development and the von Hippel-Lindau tumor suppressor homolog in Drosophila. Oncogene 19: 2803–2811.

    Article  CAS  PubMed  Google Scholar 

  • Arquier N, Vigne P, Duplan E, Hsu T, Therond PP, Frelin C et al. (2006). Analysis of the hypoxia-sensing pathway in Drosophila melanogaster. Biochem J 393: 471–480.

    Article  CAS  PubMed  Google Scholar 

  • Bai J, Uehara Y, Montell DJ . (2000). Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 103: 1047–1058.

    Article  CAS  PubMed  Google Scholar 

  • Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, Tsang G et al. (2004). The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167: 761–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco A, Poukkula M, Cliffe A, Mathieu J, Luque CM, Fulga TA et al. (2007). Two distinct modes of guidance signalling during collective migration of border cells. Nature 448: 362–365.

    Article  CAS  PubMed  Google Scholar 

  • Brand AH, Perrimon N . (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401–415.

    CAS  PubMed  Google Scholar 

  • Brown JM . (2000). Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today 6: 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Cameron CM, Harding F, Hu WS, Kaufman DS . (2008). Activation of hypoxic response in human embryonic stem cell-derived embryoid bodies. Exp Biol Med (Maywood) 233: 1044–1057.

    Article  CAS  Google Scholar 

  • Carthew RW . (2005). Adhesion proteins and the control of cell shape. Curr Opin Genet Dev 15: 358–363.

    Article  CAS  PubMed  Google Scholar 

  • Centanin L, Dekanty A, Romero N, Irisarri M, Gorr TA, Wappner P . (2008). Cell autonomy of HIF effects in Drosophila: tracheal cells sense hypoxia and induce terminal branch sprouting. Dev Cell 14: 547–558.

    Article  CAS  PubMed  Google Scholar 

  • Centanin L, Ratcliffe PJ, Wappner P . (2005). Reversion of lethality and growth defects in Fatiga oxygen-sensor mutant flies by loss of hypoxia-inducible factor-alpha/Sima. EMBO Rep 6: 1070–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan DA, Giaccia AJ . (2007). Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev 26: 333–339.

    Article  CAS  PubMed  Google Scholar 

  • Chi JT, Wang Z, Nuyten DS, Rodriguez EH, Schaner ME, Salim A et al. (2006). Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med 3: e47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doronkin S, Djagaeva I, Beckendorf SK . (2003). The COP9 signalosome promotes degradation of Cyclin E during early Drosophila oogenesis. Dev Cell 4: 699–710.

    Article  CAS  PubMed  Google Scholar 

  • Duffy JB . (2002). GAL4 system in Drosophila: a fly geneticist′s Swiss army knife. Genesis 34: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Esteban MA, Tran MG, Harten SK, Hill P, Castellanos MC, Chandra A et al. (2006). Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res 66: 3567–3575.

    Article  CAS  PubMed  Google Scholar 

  • Fong GH, Takeda K . (2008). Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ 15: 635–641.

    Article  CAS  PubMed  Google Scholar 

  • Frei C, Edgar BA . (2004). Drosophila cyclin D/Cdk4 requires Hif-1 prolyl hydroxylase to drive cell growth. Dev Cell 6: 241–251.

    Article  CAS  PubMed  Google Scholar 

  • Frew IJ, Krek W . (2007). Multitasking by pVHL in tumour suppression. Curr Opin Cell Biol 19: 685–690.

    Article  CAS  PubMed  Google Scholar 

  • Friedl P, Hegerfeldt Y, Tusch M . (2004). Collective cell migration in morphogenesis and cancer. Int J Dev Biol 48: 441–449.

    Article  CAS  PubMed  Google Scholar 

  • Geisbrecht ER, Montell DJ . (2002). Myosin VI is required for E-cadherin-mediated border cell migration. Nat Cell Biol 4: 616–620.

    Article  CAS  PubMed  Google Scholar 

  • Ginouves A, Ilc K, Macias N, Pouyssegur J, Berra E . (2008). PHDs overactivation during chronic hypoxia ‘desensitizes’ HIFalpha and protects cells from necrosis. Proc Natl Acad Sci USA 105: 4745–4750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorr TA, Tomita T, Wappner P, Bunn HF . (2004). Regulation of Drosophila hypoxia-inducible factor (HIF) activity in SL2 cells: identification of a hypoxia-induced variant isoform of the HIFalpha homolog gene similar. J Biol Chem 279: 36048–36058.

    Article  CAS  PubMed  Google Scholar 

  • Janardhan HP . (2008). The HIF-1 alpha-C/EBP alpha axis. Sci Signal 1: jc2.

    Article  PubMed  Google Scholar 

  • Jang AC, Starz-Gaiano M, Montell DJ . (2007). Modeling migration and metastasis in Drosophila. J Mammary Gland Biol Neoplasia 12: 103–114.

    Article  PubMed  Google Scholar 

  • Jiang Y, Xue ZH, Shen WZ, Du KM, Yan H, Yu Y et al. (2005). Desferrioxamine induces leukemic cell differentiation potentially by hypoxia-inducible factor-1 alpha that augments transcriptional activity of CCAAT/enhancer-binding protein-alpha. Leukemia 19: 1239–1247.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamachary B, Zagzag D, Nagasawa H, Rainey K, Okuyama H, Baek JH et al. (2006). Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res 66: 2725–2731.

    Article  CAS  PubMed  Google Scholar 

  • Lavista-Llanos S, Centanin L, Irisarri M, Russo DM, Gleadle JM, Bocca SN et al. (2002). Control of the hypoxic response in Drosophila melanogaster by the basic helix-loop-helix PAS protein similar. Mol Cell Biol 22: 6842–6853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecaudey V, Gilmour D . (2006). Organizing moving groups during morphogenesis. Curr Opin Cell Biol 18: 102–107.

    Article  CAS  PubMed  Google Scholar 

  • Liao D, Corle C, Seagroves TN, Johnson RS . (2007). Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 67: 563–572.

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Roy J, Johnson EA . (2006). Identification and function of hypoxia-response genes in Drosophila melanogaster. Physiol Genomics 25: 134–141.

    Article  PubMed  Google Scholar 

  • Manseau L, Baradaran A, Brower D, Budhu A, Elefant F, Phan H et al. (1997). GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Dev Dyn 209: 310–322.

    Article  CAS  PubMed  Google Scholar 

  • Mathieu J, Sung HH, Pugieux C, Soetaert J, Rorth P . (2007). A sensitized PiggyBac-based screen for regulators of border cell migration in Drosophila. Genetics 176: 1579–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montell DJ . (2006). The social lives of migrating cells in Drosophila. Curr Opin Genet Dev 16: 374–383.

    Article  CAS  PubMed  Google Scholar 

  • Montell DJ, Rorth P, Spradling AC . (1992). slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell 71: 51–62.

    Article  CAS  PubMed  Google Scholar 

  • Mortimer NT, Moberg KH . (2009). Regulation of Drosophila embryonic tracheogenesis by dVHL and hypoxia. Dev Biol 329: 294–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niewiadomska P, Godt D, Tepass U . (1999). DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J Cell Biol 144: 533–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda H, Uemura T, Takeichi M . (1997). Phenotypic analysis of null mutants for DE-cadherin and Armadillo in Drosophila ovaries reveals distinct aspects of their functions in cell adhesion and cytoskeletal organization. Genes Cells 2: 29–40.

    Article  CAS  PubMed  Google Scholar 

  • Pacquelet A, Lin L, Rorth P . (2003). Binding site for p120/delta-catenin is not required for Drosophila E-cadherin function in vivo. J Cell Biol 160: 313–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacquelet A, Rorth P . (2005). Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. J Cell Biol 170: 803–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parent CA, Devreotes PN . (1999). A cell's sense of direction. Science 284: 765–770.

    Article  CAS  PubMed  Google Scholar 

  • Postovit LM, Abbott DE, Payne SL, Wheaton WW, Margaryan NV, Sullivan R et al. (2008). Hypoxia/reoxygenation: a dynamic regulator of lysyl oxidase-facilitated breast cancer migration. J Cell Biochem 103: 1369–1378.

    Article  CAS  PubMed  Google Scholar 

  • Prasad M, Jang AC, Starz-Gaiano M, Melani M, Montell DJ . (2007). A protocol for culturing Drosophila melanogaster stage 9 egg chambers for live imaging. Nat Protoc 2: 2467–2473.

    Article  CAS  PubMed  Google Scholar 

  • Prasad M, Montell DJ . (2007). Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev Cell 12: 997–1005.

    Article  CAS  PubMed  Google Scholar 

  • Rocha S . (2007). Gene regulation under low oxygen: holding your breath for transcription. Trends Biochem Sci 32: 389–397.

    Article  CAS  PubMed  Google Scholar 

  • Rorth P . (1998). Gal4 in the Drosophila female germline. Mech Dev 78: 113–118.

    Article  CAS  PubMed  Google Scholar 

  • Rorth P . (2002). Initiating and guiding migration: lessons from border cells. Trends Cell Biol 12: 325–331.

    Article  CAS  PubMed  Google Scholar 

  • Rorth P, Szabo K, Texido G . (2000). The level of C/EBP protein is critical for cell migration during Drosophila oogenesis and is tightly controlled by regulated degradation. Mol Cell 6: 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Russell RC, Ohh M . (2007). The role of VHL in the regulation of E-cadherin: a new connection in an old pathway. Cell Cycle 6: 56–59.

    Article  CAS  PubMed  Google Scholar 

  • Schober M, Rebay I, Perrimon N . (2005). Function of the ETS transcription factor Yan in border cell migration. Development 132: 3493–3504.

    Article  CAS  PubMed  Google Scholar 

  • Seifeddine R, Dreiem A, Blanc E, Fulchignoni-Lataud MC, Le Frere Belda MA, Lecuru F et al. (2008). Hypoxia down-regulates CCAAT/enhancer binding protein-alpha expression in breast cancer cells. Cancer Res 68: 2158–2165.

    Article  CAS  PubMed  Google Scholar 

  • Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR . (2000). Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287: 1037–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spradling AC, Stern D, Beaton A, Rhem EJ, Laverty T, Mozden N et al. (1999). The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153: 135–177.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Starz-Gaiano M, Melani M, Wang X, Meinhardt H, Montell DJ . (2008). Feedback inhibition of Jak/STAT signaling by apontic is required to limit an invasive cell population. Dev Cell 14: 726–738.

    Article  CAS  PubMed  Google Scholar 

  • Starz-Gaiano M, Montell DJ . (2004). Genes that drive invasion and migration in Drosophila. Curr Opin Genet Dev 14: 86–91.

    Article  CAS  PubMed  Google Scholar 

  • Uchida T, Rossignol F, Matthay MA, Mounier R, Couette S, Clottes E et al. (2004). Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha. J Biol Chem 279: 14871–14878.

    Article  CAS  PubMed  Google Scholar 

  • Vidal M, Cagan RL . (2006). Drosophila models for cancer research. Curr Opin Genet Dev 16: 10–16.

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Jiang Y, Wu SF, Zhou MY, Wu YL, Chen GQ . (2008). CCAAT/enhancer-binding protein alpha antagonizes transcriptional activity of hypoxia-inducible factor 1 alpha with direct protein-protein interaction. Carcinogenesis 29: 291–298.

    Article  PubMed  Google Scholar 

  • Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D et al. (1999). Overexpression of hypoxia-inducible factor 1a in common human cancers and their metastases. Cancer Res 59: 5830–5835.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Eric Spana of the Duke Model Systems Genomics core facility for generating UASVhl/VHL transgenic fly stocks. Drs Bruce Edgar, Denise Montell and Pernille Rorth generously shared reagents. Several stocks were obtained from the Bloomington Drosophila Stock Center. DE-cadherin antibodies were obtained from the Developmental Studies Hybridoma Bank. MN was supported by a Medical Student Research Fellowship (MSRF, NIH). All work was supported by the Dorothy K Gerwin and the Maston Callison Bowld Cancer Research funds at UTHSC (to TNS), the UTHSC Molecular Resource Center (to LTR) and the UTHSC Clinical and Translational Science Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Doronkin.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doronkin, S., Djagaeva, I., Nagle, M. et al. Dose-dependent modulation of HIF-1α/sima controls the rate of cell migration and invasion in Drosophila ovary border cells. Oncogene 29, 1123–1134 (2010). https://doi.org/10.1038/onc.2009.407

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.407

Keywords

This article is cited by

Search

Quick links